
1 The crossing number lemma

1.1 Basic notation and terminology for graphs

• graph, vertex, edge, adjacent, incident, neighborhood, degree

• (induced) subgraph, spanning, complete, independent

• walk, path, cycle, isomorphic, connected, tree, leaf

A graph G(V,E) (sometimes we just write G if the context is clear) is
defined by a pair of sets: V (G), the set of vertices, and E(G), a set of two-
element subsets of V (G) called edges. Again, when context is clear, we just
write V and E. Given an edge containing two vertices, those vertices are
said to be adjacent, while the edge is said to be incident to the vertices.
Given a vertex v in a graph, the set of vertices adjacent to v is called the
neighborhood of v. The number of edges that contain a vertex v is called
the degree of v, sometimes denoted degG(v)

Suppose we have a graph G(V,E), and we consider a graph H(W,F ),
where W ⊂ V and F ⊂ E. Then H is called a subgraph of G. If addition-
ally, every edge from E whose vertices are contained in W is present in H,
we call H an induced subgraph of G. If every vertex of V is in some edge
of F , then we say that H spans G. If every pair of vertices is present in the
edge set, the graph is called complete. The complete graph on n vertices is
often denoted Kn. A set of vertices is called independent if none of them
adjacent to one another.

A sequence of vertices (v1, v2, . . . , vn) in a graph G(V,E) is called a walk
when vi is adjacent to vi+1 for all i ∈ [1..(n− 1)]. If the vertices are distinct,
a walk is also called a path. A path on n vertices is sometimes denoted Pn.
If {xn, x1} ∈ E as well, the path is called a cycle. A cycle on n vertices is
sometimes denoted Cn.

If G(V,E) and H(W,F ) are graphs, and there exists a bijection f : V →
W such that two vertices in V are adjacent in G if and only if their images
under f are adjacent in H. We sometimes write G ∼= H. A graph G is called
connected if there is a path in G connecting every possible pair of vertices.
Notice that this is distinct from completeness! A connected graph with no
cycles is called a tree. A vertex of degree one in a tree is called a leaf. A
tree that spans a graph is called a spanning tree. A graph on multiple trees
is called a forest.
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1.2 Planar graphs

• planar, crossing, face, Euler’s formula, crossing number

In a drawing of a graph, an instance of two edges crossing each other is
called a crossing. A graph is planar if it can be drawn without any two
edges crossing. A face is a region (bounded or unbounded) delineated by
the edges in a drawing of a planar graph.

Proposition 1 (Euler’s formula). Suppose G is a simple, connected, planar
graph with v vertices, e ≥ 1 edges, and f faces, then v + f = e+ 2.

Proof. Proceed by induction on the number of edges. Start with a graph
consisting of only one edge. Notice that it has two vertices and one face, sat-
isfying the formula. For our induction hypothesis, suppose that the formula
holds for all simple, connected, planar graphs with n edges. Now, to show
that the formula will hold for any simple, connected, planar graph with n+1
edges, we watch what happens whenever we add an edge. Notice that any
time you add an edge, you either add a vertex or a face. Therefore, we are
done, by induction.

Proposition 2. Suppose G is a simple, connected, planar graph with e ≥ 2
edges, and f faces, then 3f ≤ 2e.

Proof. Draw the graph. For each edge in the graph, draw a little dog ear on
each side, so that each edge looks like a wiener dog. Observe that there are
two dog ears on each edge, so the number of dog ears is exactly 2e. Notice
that each face needs at least three dog ears, so the number of dog ears is
≥ 3f .

Combining Propositions 1 and 2 yields the following corollary.

Corollary 3. Suppose G is a planar graph with e ≥ 2 edges, and v vertices,
then

e− 3v + 6 ≤ 0. (1)

Note that the complete graph on four vertices is planar, as it can be
drawn without any edges crossing, but the complete graph on five vertices is
NOT planar, as it has five vertices and ten edges, and therefore fails to obey
the inequality in Corollary 3.

Proposition 4. Suppose G is a graph (possibly nonplanar or disconnected)
with e ≥ 2 edges, and f faces, then the minimum number of crossings under
any redrawing of G is

cr(G) ≥ e− 3v + 6. (2)
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Proof. Take our graph G, and if it satisfies (1), then we know it is planar,
and we trivially satisfy (2). If not, then we consider a drawing of G that
exhibits the minimal number of crossings, and select one of the crossing
edges, e1. We now consider a new graph, G1, which is just G with the
edge e1 removed. Now, e1 contributed at least one crossing to cr(G), so by
removing it, there should be at least one crossing fewer in G1. Of course, it
is possible that e1 contributed many crossings, so we just have the inequality
cr(G1) ≤ cr(G) − 1. If G1 satisfies (1), then we stop. Otherwise, we repeat
the above procedure, removing edges until we get to some j for which Gj is
planar. We then have

0 = cr(Gj) ≤ cr(G)− j,

which yields the desired result.

1.3 A pinch of probability

• probability, expected value

We’ll prove a nice graph theory result by applying some simple probability.
First, we define a probability as a number p ∈ [0, 1]. Next, we define the
expected value, E, of a variable to be its probabilistically weighted sum.
That is,

E(x) =
∑
j

pjxj,

where x takes the value xj with probability pj, and
∑

j pj = 1.

Example 1. Suppose I flip a fair coin 100 times. What is the expected
number of heads?
Solution: In the event I flip heads, I add one to my count, and in the event
I flip tails, I add zero to my count.

E(heads in 100 flips) =
∑

all flips

(pheads · 1 + ptails · 0)

= 100 · 1

2
· 1 + 100 · 1

2
· 0 = 50.

We are greatly glossing over this, but here we will say that expectation
is linear, meaning that E(X) + E(Y ) = E(X + Y ). The following example is
a very superficial illustration of this fairly deep fact.
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Example 2. Suppose I flip a fair coin 60 times, and record the number of
heads. Suppose I flip the same coin 40 more times and record the number of
heads. The expected number of heads from the first sequence of flips was 30,
and the expected number from the second sequence was 20. It should come as
no surprise that 30 + 20 = 50, which is the expected number of flips we got
from Example 1.

1.4 The crossing number lemma

The next proof is from Székely’s Crossing numbers and hard Erdős prob-
lems in discrete geometry. It was initially shown by other people. See the
references in Székely’s paper.

Lemma 5 (Crossing Number Lemma). Suppose G is a graph with e edges,
v vertices, and e ≥ 4v, then

cr(G) &
e3

v2
.

Proof. Let H be a random induced subgraph of G, where each vertex is
chosen with probability p = 4v

e
. Now, write (2) for H, and take expected

values of both sides.

E(cr(H)) ≤ E(eH)− 3E(vH) + 6 (3)

Verify that E(vH) = pv, E(eH) = p2e, and E(cr(H)) ≤ p4(cr(G)), and (3)
becomes

p4cr(G) & p2e− 3pv + 6,

which yields the claimed estimate.

1.5 The return of incidence theory

• Szemerédi-Trotter

Again, this proof is due to Székely, but the result was initially shown by
Szemerédi and Trotter.

Theorem 6 (Szemerédi-Trotter, Extremal problems in discrete geometry).
Given a collection of n points and m lines in the plane, the number of inci-
dences of points and lines is

I . (nm)
2
3 + n+m.
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Proof. Construct a graph, G, by letting the vertices be the n points, and the
edges be the I − m segments connecting the consecutive points on a given
line. So v = n, and e = I − m. Notice that the two distinct lines can
cross each other only once, so number of crossings in G must be less than(
m
2

)
≈ m2. If e ≤ 4v, then I ≤ 4n+m. If e > 4v, then we can apply Lemma

5, and we get that I . (nm)
2
3 +m, and we are done.

1.6 Crossings and repeated distances

• unit distance problem

When Erdős posed his distinct distances problem, he also raised the unit
distance problem, which is to determine how often a single distance could
occur in any large finite set of points in the plane. It is so called because we
can scale the set to make whatever the most popular distance is 1, and vice
versa. Here is the best known result. It is due to Spencer, Szemereédi, and
Trotter, but we, again, give a proof by Székely.

Theorem 7. In any large finite set of n points in the plane, no distance can
occur more often than n

4
3 times.

Proof. Draw unit circles centered at each point in our set. Construct a
multigraph, G, by letting the vertices be the n points, so v = n. Now let the
edges be the arcs of circles between consecutive points on any given circle.
Notice that each edge corresponds to an incidence of a point and a unit circle.
For each pair of points determining a unit distance, there will be exactly two
such incidences (each point will lie on the other point’s circle). So e = I,
the number of incidences, which is exactly two times the number of unit
distances.

If there are fewer than 10v edges, then we have no more than 10v = 10n
incidences, so we have no more than . n unit distances. So we proceed
by assuming e > 10v. We will now need to prune our multigraph so that
it becomes a graph, and we can apply Lemma 5. We do this by removing
any loops, or duplicate edges between pairs of points. To do this without
destroying our structure, we remove any circle with fewer than three points.
Notice that we lose at most 2n edges in doing this (no more than two points
per circle, and no more than n circles), meaning that we still have > 8n edges
remaining. Now, it is possible that a pair of points could be on two distinct
circles (but no more than two), each that have several other points. In this
case, we remove one of the two edges. In this way, we lose no more than half
of our edges, meaning that we still have e > 4v after pruning.
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Notice that the two distinct circles can cross each other only once, so
number of crossings in G must be less than

(
n
2

)
≈ n2. Because we have that

e > 4v, we can apply Lemma 5, we get

I3

n2
=
e3

v2
. cr(G) . n2

which gives us that I . n
4
3 , as claimed.

We now apply the pigeonhole principle backwards along with the previous
result to get a better bound on the distinct distances problem.

Theorem 8 (n
2
3 estimate). Any large finite set of n points in the plane

determines at least n
2
3 distinct distances.

Proof. There are
(
n
2

)
≈ n2 point pairs, each of which determines some dis-

tance. By Theorem 7, we know that no distance can occur more than n
4
3

times. So by the pigeonhole principle, there must be at least n
2
3 distinct

distances.

1.7 Some additive number theory

• sum set, product set, sums and products problem

Given sets A,B ⊂ R, define the sum set

A+B := {a+ b : a ∈ A, b ∈ B},

and define the product set

AB := {ab : a ∈ A, b ∈ B}.

The sums and products problem is to determine for any large finite
A ⊆ R what is max{|A + A|, |AA|} in terms of |A|? Erdős has conjectured
that it should be at least |A|2−ε, for any ε > 0. Here is a nontrivial estimate.

Theorem 9 (Elekes On the number of sums and products). Given a set, A,
of n real numbers,

max {|A · A|, |A+ A|} & n
5
4 .

Proof. We will construct a set of points and lines. The points will be

P = {(ai + aj, ak · al) : ai, aj, ak, al ∈ A} ,
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and the lines will be

L = {y = as · (x− at) : as, at ∈ A} .

There are |A+ A| · |A · A| points, and n2 lines. Notice that each line is
coincident to at least n points. Apply Theorem 6, and see that

n3 = n · |L| . I .
(
|A+ A| · |A · A| · n2

) 2
3 + |A+ A| · |A · A|+ n2.

So |A+ A| · |A · A| & n
5
2 , and the result follows.
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