
Ch. 3: Random Vectors
A random vector is simply a vector

,

X = ( X . .
.
. . , Xn ) e IR

"

whose coordinates are random variables

conthesameprobabilitysp.ae#
It's difficult to visualize n dimensions

.

Let's start by looking at the length of X,
NXHz=Vxiti--tXT € IR

.

Note.thrsisarandomvariab.IE#
Q

.
How long should we expect X to be ?

Suppose IE Xi? = I for l s i s n .

I



Then we have

Ell X Ili = E ( x it - . . + Xi )

= IE
,
E Xi
'

= N
.

That is
,
we have Il XIII n on average ,

which suggests that Fxka rn .

Thus
,
we might expect that llxllz - rn

issmallcwithhrghprobabilityt.ITharem 3
.
I
.
I ( concentration of the norm )

Let X = ( Xc , . . . , Xn) have independent
-

sub - gaussian coordinates, each with E ki=L .Then

P ( 111×11 . - rn I > t) e 2e-
et?"

Z



Here C > O is an absolute constant
,

and
K = maxi llxlhe

.

cnn.mumofthesub-gaussoannormd.IO
ur strategy . i ) Try to replace 1kHz with Hxlli

ii ) Use Bernstein 's inequality
( corollary 2 .

8.3)

Forihweasethefollow.mg#
Lemma . If z

,
830

,
then I z - 1178

implies that

I z' - l l > max f 8 , 823 .

Proof . Exercise .

Hint : write z = I + a
,

so a Z - I
.

Then consider the cases where
late I and a > I

.
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Proof of Theorem .

We have

111×11 . - rn l 't ⇒ Ifn Hxlk - II > In
ftnllxlli - Y > u,

with u -- max 1¥
,
¥3

.

Remark . Given two events A and B
,

if B always happens whenever
A does

,
then PCA) E PCB) .

That is
,
we see that

(monotonicity)

Pflllxlh- rn I > t)
=P ( Khali - if > u) .
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Thus
,
it suffices to bound this last

probability from above
.

Next
,
observe that

ntllxlli - I = In
.

( Xi - D ,
a sum of independent

,
mean zero

sub - exponential random variables ( since Xi
is sub - gaussian ; see Lemma 2.7 .

6)
.

The sub - exponential norm of Xi - I satisfies

Hxi - Ike
,

E C Hxilly
. Cantering )

= Cll Xi Ike
,
(Lemma 2.76)

E C K
'

(by hypothesis )
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If we set

L := maxi H Xi - Illy
, ,

then we're just shown that L s CK ?

Applying Bernstein 's inequality, we find that
Pant

.

cxi - DD
a- 2expff.n.mnIE , 3)

is an absolute constant( Eoismphcity , we assume c > I
.

)
E 2 exp (- c - n -minf¥ , ¥4} )
⇐ 2 exp C- c. n - min I#a

,
¥43)

g
( provided that K > I ]



⇐ 2 exp C- Efsa - min fu , u 3)
= 2expf-EF.tn) .

It!!; IIs
that u -- maxi ¥

,

min fu
,
u
' } = End

It follows that
- E.t7k4

Pflllxlh - rn I > t ) s Ze ,

which is exactly what we wanted to show . Et

REFthatweassumdkintkproof.ba
Luckily , this turns out to be true ! why ?
Use Jensen 's inequality :

E exp (Xilt
') > exp CEUTA)) -- exp (¥),

7- ( since E Xi = I ]



which implies that H Xi Hy
.
> I (check ! )

.

Thus K = maxi llxi Ily > I .

Temsaysthatrandmeotend
to cluster around the sphere of radius rn
centered at the origin .

r
>

The distribution of 10,000 samples of
llxkz - Tn with n = 5,000 .
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Mean and Covariance
The mean of X = ( Xi

, .
. . .
Xn)

is taken coordinate - wise :

E X = ( EX , .
. .

.

,
EXn)

.

The higher-dimensional analogue of variance
is the covariance matrix of X , given by

covCX) = E (X -a) (x-uIf
Granspose]

where µ = EX .

This is an nxn symmetric,
positive-semidefinitemat.ie#
Def

. A symmetric matrix A is called positive -
semidefinite if

XT Ax > O

for all x e IR?

q



Positive - semidefinite matrices are special ,
as they have a unique (positive semi

- definite)
square

root
.

That is , if A is positive - semidefinite , then there
is a unique positive- semidefinite matrix B = BT
such that

A = BB = B?

We write D= A?
#

Note that
covcx) = E CX-u) CX-my

= # (x.xt-n.XT-x.uttu.at)
= E (X -XT ] -µ.net-nutty.pt

= Efx. XT] -nut .
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Compare this with Var CY) = ELY
'] - (EY)?

We also define the second moment matrix of
X as

E = E (x ) : = Efx -Xt]
,

and so cov ( X ) = E - µ .at .

Hence
,
if X has mean zero, then covCX) =E .

Remark
. The matrix E is also nxn

,

symmetric, and positive - semidefinite .

#

Since E is a real
, symmetric matrix , we can

apply the Spectral Theorem to write

E = U - D.Ut
.

It



Here
,
U is an orthogonal matrix ( U

- '
= U'T
,

whose columns
,
Ui , . . .

,Un are linearly independent7

eigenvectors of 2 .

If Si is the eigenvalue associated to Ui
( E - Ui = si -Ui ) , then D is the diagonal
matrix of eigenvalues :

o -- (
"

o
" :?) .

The spectral decomposition is sometimes written
in terms of the eigenvectors :

E = II si - Ui - Ui .
It's also common to order the eigenvalues in
descending order, according to size :

S , Z S z Z - -
- Z Sn Z O .
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