Ch. 3: Random Vectors A random vector is simply a vector, $X = (X_1, \dots, X_n) \in \mathbb{R}^n$ whose coordinates are random variables (on the same probability space). It's difficult to visualize n dimensions. Let's start by looking at the length of X, $\|X\|_2 = \sqrt{X_1^2 + \cdots + X_n^2} \in \mathbb{R}.$ Note. This is a random variable! Q. How long should we expect X to be? Suppose $\mathbb{E} X_i^2 = |$ for $| \leq i \leq n$.

1

Then we have

 $\mathbb{E}\left\|X\right\|_{z}^{2}=\mathbb{E}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)$ $= \sum_{i=1}^{n} \mathbb{E} X_{i}^{2}$

= n.

That is, we have $\|X\|_2^2 = n$ on average, which suggests that $\|X\|_2 \approx \sqrt{n}$. Thus, we might expect that $\|X\|_2 - \sqrt{n}$ is small (with high probability): Theorem 3.1.1 (Concentration of the norm) Let $X = (X_1, ..., X_n)$ have independent, sub-gaussian coordinates, each with $\mathbb{E} X_i^2 = 1$. Then $P(|\|\mathbf{X}\|_2 - \sqrt{n}| \neq t) \leq 2e^{-ct^2/K^4}$

Here
$$C > 0$$
 is an absolute constant,
and
 $K = max_i || X ||_{ap_2}$
(maxmum of the sub-gaussian norms).
Our strategy. i) Try to replace $||X||_2$ with $||X||_2^2$
ii) Use Bernsten's meguality
(Corollary 2.8.3)
For i), we use the following.
Lemma. If $z, \delta > 0$, then $|z - 1| > \delta$
implies that
 $|z^2 - 1| > max \{\delta, \delta^2\}$.
Proof. Exercise. Hint: write $z = 1 + \alpha$,
so $\alpha \ge -1$. Then consider the cases where
 $|\alpha| \le |$ and $\alpha \ge 1$.

Proof of Theorem.
We have

$$| I|X||_{2} - In | \neq t \implies |I||X||_{2} - | \neq t$$

$$(Lemma) | I||X||_{2} - | \neq u,$$

$$(Lemma) | I||X||_{2} - | \neq u,$$
with $u = max \{ \frac{t}{In}, \frac{t^{2}}{n} \}.$
Remark. Given two events A and B,
if B always happens whenever
A does, then $P(A) \leq P(B).$
(monotonicity)
That is, we see that
 $P(| I||X||_{2} - In| \neq t)$

$$\leq P(| I||X||_{2} - 1| \neq u).$$
4

Thus, it suffices to bound this last probability from above. Next, observe that $\frac{1}{n} \|X\|_{2}^{2} - 1 = \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{2} - 1),$ a sum of independent mean zero sub-exponential random variables (since X; is sub-gaussian; see Lemma 2.7.6). The sub-exponential norm of X:- 1 satisfies $\|X_i^2 - I\|_{\mathcal{W}_i} \leq C \|X_i^2\|_{\mathcal{W}_i}$ (centering) $= C \| X_i \|_{\mathcal{P}_2}^2$ (Lemma 2.7.6) < C K² (by hypothesis)

If we set $L := \max_{i} \| X_{i}^{2} - I \|_{\mathcal{Y}_{i}}$ then we've just shown that $L \leq C K^2$. Applying Bernstein's meguality, we find that $P\left(\left| \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 1) \right|\right)$ < 2 exp (- c.n.min { 4, 42}) C > 0 is an absolute constant For simplicity, we assume $C \ge 1$. $\leq \operatorname{Zexp}\left(-\operatorname{c.n.min}\left\{\frac{u}{CK^{2}}, \frac{u}{C^{2}K^{4}}\right\}\right)$ $\leq \operatorname{Zexp}\left(-c\cdot n\cdot \min\left\{\frac{u}{c^{2}K^{4}}, \frac{u}{c^{2}K^{4}}\right\}\right)$ [provided that K = 1] 6

 $\leq 2\exp\left(-\frac{c\cdot n}{C^2K^4}\cdot min\{u,u\}\right)$ $= 2 \exp\left(-\frac{c \cdot n}{K^{4}} \cdot \frac{t^{2}}{n}\right).$ After recalling that $u = \max\{\frac{t}{n}, \frac{t^2}{n}\}$ verify that $mn\{u, u^2\} = \frac{t^2}{n}$ It follows that $-\hat{c}\cdot t^2/k^4$ $P(|||x||_2 - \sqrt{n}| \ge t) \le 2e^{-\hat{c}\cdot t^2/k^4}$ which is exactly what we wanted to show. Recall that we assumed K > 1 in the proof above. Luckily, this turns out to be true! Why? Use Jensen's neguality: $\mathbb{E} \exp(X_{i}^{2}/t^{2}) \ge \exp(\mathbb{E}(X_{i}^{2}/t)) = \exp(\frac{1}{t^{2}}),$ $\left[\text{since } \mathbb{E} X_i^2 = 1 \right]$ 7

which implies that Xilly > (check!). Thus K = max; ||x; ||y > 1.

The Theorem says that random vectors tend to cluster around the sphere of radius In centered at the origin.

Mean and Covariance The mean of $X = (X_1, \dots, X_n)$ is taken coordinate-wise: $\mathbb{E} \times = (\mathbb{E} \times_{1}, \dots, \mathbb{E} \times_{n}).$ The higher-dimensional analogue of variance is the covariance matrix of X, given by $cov(X) = \mathbb{E}(X-\mu)(X-\mu)'$ where $\mu = E X$. This is an $n \times n$ symmetric, positive-semidefinite matrix. Def. A symmetric matrix A is called positive -semidefinite if x[⊤]A_×≥O for all x e Rⁿ. 9

That is, if A is positive-semidefinite, then there
is a unique positive-semidefinite matrix
$$B = B^T$$

such that
 $A = BB = B^2$.

We write
$$B = A^{\frac{1}{2}}$$
.

Note that $cov(X) = \mathbb{E}(X-\mu)(X-\mu)^T$

$$= \mathbb{E} \left(X \cdot X^{T} - \mu \cdot X^{T} - X \cdot \mu^{T} + \mu \cdot \mu^{T} \right)$$

$$= \mathbb{E}\left[(X \cdot X^{\mathsf{T}}\right] - \mu \cdot \mu^{\mathsf{T}} - \mu \cdot \mu^{\mathsf{T}} + \mu \cdot \mu^{\mathsf{T}}\right]$$

 $= \mathbb{E}[X \cdot X^{\mathsf{T}}] - \mu \cdot \mu^{\mathsf{T}}$

Compare this with $Var(Y) = \mathbb{E}[Y^2] - (\mathbb{E}Y)^2$ We also define the second moment matrix of X as $\Sigma = \Sigma(X) := \mathbb{E}[X \cdot X^T],$ and so $cor(X) = \sum - \mu \cdot \mu^{T}$. Hence, if X has mean zero, then $cov(x) = \Sigma$. Remark. The matrix Z is also nxn, symmetric, and positive-semidefinite. Since Σ is a real, symmetric matrix, we can apply the Spectral Theorem to write $\Sigma = U D U^{T}$

[]

Here, U is an orthogonal matrix (U'=U'), whose columns, u_1, \ldots, u_n are linearly independent eigenvectors of Σ .

If S_i is the eigenvalue associated to u_i $(\Sigma \cdot u_i = S_i \cdot u_i)$, then D is the diagonal matrix of eigenvalues: $D = \begin{pmatrix} S_i & O \\ O & \ddots \\ S_n \end{pmatrix}$.

The spectral decomposition is sometimes written
in terms of the eigenvectors:
$$\sum_{i=1}^{n} s_i \cdot u_i \cdot u_i^{\mathsf{T}}$$

It is also common to order the eigenvalues in descending order, according to size: $S_1 \ge S_2 \ge \cdots \ge S_n \ge O$.