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Machine Learning→ Deep Learning

https://www.digitaltrends.com/cars/

toyota-robot-car-extreme-tests-california/

https://www.shellypalmer.com/2016/03/

alphago-vs-not-fair-fight/

Machine learning and algorithms are currently having a
direct impact on many aspects of our lives

Lack of mathematical understanding

https://www.digitaltrends.com/cars/toyota-robot-car-extreme-tests-california/
https://www.digitaltrends.com/cars/toyota-robot-car-extreme-tests-california/
https://www.shellypalmer.com/2016/03/alphago-vs-not-fair-fight/
https://www.shellypalmer.com/2016/03/alphago-vs-not-fair-fight/
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Neural Networks

Input layer: vector X =
(
X1,X2,X3, . . . ,Xd(0)

)
∈ Rd(0) (the original input vector is

augmented with X0 = 1)
Find optimal weights
Every node has a transformation function θ .
From layer l−1 to layer l we have a weight matrix W(l) (weights in) of size
d(l−1)×d(l), and the matrix W(l+1) (weights out) of dimension d(l)×d(l+1). We
Put all weight matrices together. Weight parameter: w = {W(1),W(2), . . .W(L)}.
Approximation to target function hw(X)
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Neural Networks

Derived features (Sm) (hidden units) are created from linear
combinations of the inputs (Xi), and the targets (Yk) are
modeled as functions of linear combinations (Sm)

The activation function θ is the sigmoid σ given by

σ(u) =
1

1+ e−u

To find the weight in w, it is common to use the batch
gradient descent algorithm
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The Data

What is LiDAR?
LiDAR stands for light detection and ranging and it is an optical remote sensing technique
that uses laser light to densely sample the surface of the earth, producing highly accurate
x, y and z measurements. The collection vehicle of LiDAR data might be and aircraft,
helicopter, vehicle, and tripod.

Figure: The profile belonging to a series of terrain profiles is measured
in the cross track direction of an airborne platform.
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3D point cloud LiDAR Data

Figure: 3D LiDAR Point Cloud Image of San Francisco Bay and Golden Gate Bridge in
California, Courtesy of Jason Stoker, USGS

Goal:
To classify ground, water, and the bridge structure.
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Scatter plot. About 15 million data points
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Attributes/Features

Intensity. Captured by the LiDAR sensors is the intensity of each return.

Number of returns. The number of returns is the total number of returns for a given
pulse.

Point classification. Every LiDAR point that is post-processed can have a
classification that defines the type of object that has reflected the laser pulse. The
different classes are defined using numeric integer codes in the LAS files.

Edge of flight line. Points flagged at the edge of the flight line will be given a value
of 1, and all other points will be given a value of 0.

RGB. LiDAR data can be attributed with RGB (red, green, and blue) bands.

GPS time. The GPS time stamp at which the laser point was emitted from the
aircraft. The time is in GPS seconds of the week.

Scan angle. The scan angle is a value in degrees between -90 and +90.

Scan direction. The scan direction is the direction the laser scanning mirror was
traveling at the time of the output laser pulse.
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Attribute example: Number of Returns

1st return
2nd return

3rd return

4th return

5th return

Amplitude
Tim

e

Figure: A pulse can be reflected off a tree’s trunk, branches, and foliage as well as
reflected off the ground. Karamatou Yacoubou Djima, F. Patricia Medina, Linda Ness and
Melanie Weber, Heuristic Framework for Multi-Scale Testing of the Multi-Manifold
Hypothesis , AWM Springer Series.
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Classification meaning and value

0 Never classified
1 Unassigned
2 Ground ←−−−−−−−−−−−−−−
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building
7 Noise ←−−−−−−−−−−−−−−
8 Model key/ Reserved
9 Water ←−−−−−−−−−−−−−−
10 Rail ←−−−−−−−−−−−−−−
11 Road surface
...

...
17 Bridge deck ←−−−−−−−−−−−−−−
18 High noise ←−−−−−−−−−−−−−−
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Main outline of experiments

1 Feature engineering

2 Perform dimensionality reduction using either PCA (for a
linear projection) or a 3-layer auto-encoder (for a non-linear
projection)

If using PCA, then use the projected features as the predictors
for our learning
If using an auto-encoder, then use the hidden layer as the
predictors for our learning

3 Classifier: K-nearest neighbor, random forest,
feed-forward neural network

4 Cross-validation (f1 scores)
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Figure: 3D LiDAR point cloud graphed by intensity for a location close
to the JFK airport, NY.
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Figure: Google map satellite image of the location of associated to the
3D point cloud in the JFK airport, NY. Coordinates:
40◦38′38.6”N73◦44′46.9”W Rockaway Blvd, Rosedale, NY 11422 See
Fig.4
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Feature engineering: neighbor matrix construction

For each LiDAR data point (example) we consider k nearest
neighbors based on spatial coordinates (xi,yi,zi) and create a new
example which is in higher dimensions.
More precisely, let F(i)

n(0) the set of N features associated to the ith

example (the first three features are spatial.) Now let F(i)
n(j) the set

of N features associated to the jth nearest neighbor to the ith
example. We end up with set of set of features associated to the
ith example:

F(i)
n(0),F

(i)
n(1), . . . ,F

(i)
n(k),

where i = 1, . . . ,s. Here F(i)
n(j) ∈ R1×N for each j = 1, . . . ,k.

We concatenate the features[
F(i)

n(0) F(i)
n(1) . . . F(i)

n(k)

]
∈ R1×(k+1)·N

for each i = 1, . . . ,s.
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Neighbor matrix

We then put all the rows together and get what we call the
neighbor matrix

F(1)
n(0) F(1)

n(1) . . . F(1)
n(k)

F(2)
n(0) F(2)

n(1) . . . F(2)
n(k)

...
...

...
...

F(s)
n(0) F(s)

n(1) . . . F(1)
n(s)

 ∈ Rs×(k+1)·N
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We illustrate how to obtain the second row of the neighbor matrix
in Fig. 6.

Figure: Forming the second row by concatenating the features of of the 3
nearest neighbors to the the second example in the original data frame.
The neighbors are computed respect to the spatial coordinates (x,y,z) of
the design point. Observe that if the original data has N = 7 features, the
neighbor matrix has (3+1)×7 = 28 features.
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The original features include: x, y, z,, intensity, number of returns
and at most the new features
(X1 = x, X2 = y,X3 = z,X4 = F1, . . . ,X10 = F7)
We store the vector containing the classification given by the
software (e.g. LASTool)
Construct the “neighbor matrix”. Find 10 nearest neighbors for
each (x,y,z). One row of the neighbor matrix is a concatenation of
x,y,z,F1,F2, . . . ,F7 and its nearest neighbors with their
corresponding features
Choose 80% for testing and 20% for training:

Xtrain ← 80%

Xtest ← 20%

We also store actual classification value y and prediction ŷ
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Dimensionality reduction: PCA

The low dimensional data representation is obtained by mapping the data via M, i.e.

Z = XM.

PCA solves the eigen-problem cov(X)M = λM.
cov(X): sample covariance matrix of X. The principal components φ1,φ2, . . . ,φd are the
ordered sequence of eigenvectors of cov(X), and the variances of the components are the
eigenvalues.
M is the matrix with columns φi, i = 1, . . .d.

Figure: Z1 = φ11X1 +φ21X2 +φ31X3 and Z2 = φ12X1 +φ22X2 +φ32X3
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Dimensionality reduction: Auto-encoders

argmin
W(1) ,b1 ,c1

‖X− f+(f (X))‖22 = argmin
W(1) ,b1 ,c1

‖X− X̂‖22 , (1)

where W(1) are the weights, and b1 and c1 are coming from
the bias term. They determine the non-linear maps f
(encoder) and f+ (decoder). Note that the nonlinearity
comes from the introduction of some activation function θ :

f (X) = θ

(
W(1)X+b1

)
, f+(Z) = θ

(
(W(1))

T
Z + c1

)
,

(2)
The auto-encoder hw(X) = f+(f (X)) “tries to learn” the
identity function

X̂ = hw(X)≈ X. (3)

An auto-encoder is an unsupervised learning algorithm that applies backpropagation,
setting the target values to be equal to the inputs.

Grim, A., Iskra, B., Ju, N., Kryshchenko, A., Medina, F.P., Ness, L. , Ngamini, M., Owen, M., Paffenroth, R.,
Tang, S. Representation of Data as Multi-Scale Features and Measures, To appear in AWM Series Springer Volume.
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Dimensionality reduction: Auto-encoders

Figure: 5-layer auto–encoder diagram. The input layer has dimension d(0), the five inner
layers have dimensions d(1), d(2),d(3),d(4) and d(4), respectively. The dimension of the
outer layer X̂ has dimension d(6) = d(0) since this is an auto-encoder. The 5th hidden layer
has dimension d(5) = d(1) and the 4th hidden layer has dimension d(4) = d(2). The 3rd
layer is the most inner layer with dimension d(3) which is the reduced dimension we use
in some of the frameworks for classification.
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The metric that we use to measure precision of our algorithm is
given by

PREmicro =
∑

N
j=1 TPj

∑
N
j=1 TPj +∑

N
j=1 FPj

, (4)

(known as micro average) where TPi means true positive on the
ith class and FPi means false positive on the ith class.
We provide the

F1 score = 2
PREmicro ·Recall
PREmicro +Recall

, (5)

where the recall (or sensitivity) is given by

Recall =
∑

N
j=1 TPj

∑
N
j=1 TPj +∑

N
j=1 FNj

, (6)

where FNj means false negative on the jth class.
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K-fold cross validation

Figure: 5-fold CV example for s data points: p1,p2, . . . ,ps. Each
randomly selected fifth is used as a validation set (shown in purple), and
the remainder as a training set (shown in orange). The F1 score is
computed for each split and then the mena of the F1 scores is computed.
The CV scores calculated as in ??. Such scores for experiments
described in section ?? are summarized in Table10. The figure is a
recreation of a graph from ?, p. 181.
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Some results

KNN RF RF-Ens NN
Raw 0.8670 (+/- 0.0004) 0.8701 (+/- 0.0007) 0.8564 (+/- 0.0019) 0.8241 (+/- 0.0018)
PCA 0.8399 (+/- 0.0002) 0.8384 (+/- 0.0010) 0.8212 (+/- 0.0011) 0.7791 (+/- 0.0069)
Enc 0.8223 (+/- 0.0004) 0.8160 (+/- 0.0003) 0.7902 (+/- 0.0041) 0.6331 (+/- 0.0110)
Neig+PCA 0.8291 (+/- 0.0032) 0.8445 (+/- 0.0029) 0.8361 (+/- 0.0031) 0.9748 (+/- 0.0042)
Neig+Enc 0.7366 (+/- 0.0045) 0.7816 (+/- 0.0044) 0.7700 (+/- 0.0049) 0.6770 (+/- 0.0059)
Neig 0.8303 (+/- 0.0025) 0.9497 (+/- 0.0101) 0.9499 (+/- 0.0118) 0.9792 (+/- 0.0044)

Figure: 5-fold cross validation of F1 scores for different classification frameworks; number of classes=6; RAW+
Norm= Standardized and normalized raw data (includes pre-processing step) Enc= Encoder (using inner layer of auto
encoder for dimension reduction); PCA and Enc have already been standardized and normalized. Machine Learning in
Lidar 3D point cloud, accepted (Springer) with Randy Paffenroth (WPI)
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Generating more features: product coefficients

µ: non-negative measure on X; dy: the naive
measure, such that dy(X) = 1

dy(L(S)) =
1
2

dy(S), dy(R(S)) =
1
2

dy(S)

µ is additive in the binary set system,

µ be a dyadic measure on a dyadic set X and
S be a subset of X. The product coefficient
parameter aS is the solution for the following
system of equations

µ(L(S)) =
1
2
(1+as)µ(S) (7)

µ(R(S)) =
1
2
(1−as)µ(S) (8)

Dyadic Product Formula Representation
X with binary set system B whose non-leaf
sets are Bn

µ = µ(X)∏S∈Bn (1+aShS)dy

where aS ∈ [−1,1]
hS : Haar-like function

R. FEFFERMAN, C. KENIG, AND J. PIPHER, The theory of weights and the
Dirichlet problem for elliptical equations, Annals of Math., 134 (1991), pp. 65–124
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Ground vs Vegetation

(a) Ground (b) Vegetation

Figure: Histogram of coefficients by level for sets of ground points and vegetation points

D. Bassu, P. W. Jones, L. Ness, D. Shallcross, Product Formalisms for Measures on Spaces with Binary Tree
Structures: Representation, Visualization, and Multiscale Noise, Mathematics in Data Science Workshop, 2015
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Manifold hypothesis (related to intrinsic dimension)
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Figure: Intrinsic dimension of the line-sphere sample and the LiDAR data set from the
Golden Gate bridge. Karamatou Yacoubou Djima, F. Patricia Medina, Linda Ness and
Melanie Weber, Heuristic Framework for Multi-Scale Testing of the Multi-Manifold
Hypothesis , Accepted,Research in Data Science, AWM Springer-Verlag Series.

Proposition (Multi-manifold Hypothesis Test)

Given a data set X = {xi}i∈I in RD and a multi-manifold V , is the expected distance of the
points in X to V more than one would expect? If so, reject V as being a multi-manifold
that fits X.

Theoretical framework: C. FEFFERMAN, S. MITTER, AND H. NARAYANAN, Testing the manifold hypothesis, J.
Amer. Math. Soc., 29 (2016), pp. 983–1049
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Microsoft AI for Earth Grant (Azure Services):
Climate Change

Differentiation of photosynthetic components (leaf, bushes or grasses) and
non-photosynthetic components (branches or stems) by 3D terrestrial laser scanners (TLS)
is of key importance to understanding the spatial distribution of the radiation regime,
photosynthetic processes, and carbon and water exchanges of the forest canopy.
YU students collaborating: Tony Arriaza, Yudi Meltzer (IBM), Ezra Splaver

F. Patricia Medina, Mathematical Sciences Department, Worcester Polytechnic Institute (P.I.); Jonathan Batchelor,
Remote Sensing and Geospatial Laboratory, School of Environment and Forestry Science, University of Washington
(Co-P.I.); L. Monika Moskal, Remote Sensing and Geospatial Laboratory, School of Environment and Forestry Science,
University of Washington (Co-P.I.); Randy Paffenroth, Mathematical Sciences Department, Computer Science
Department, Data Science Program, Worcester Polytechnic Institute (Co-P.I.); Guang Zhen, Jiangso Provincial Key
Laboratory of Geographic Information Science and Technology, International Institute of Earth System Science, Nanjing
University, China (Co-P.I.)
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Thanks!




