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The Probabilistic method

Define random object; prove that it has required properties

Works suprisingly often.

“Non-constructive”
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Example: edge coloring Kn

Color the edges of Kn for few monochromatic triangles

Method: Just randomly color every edge red or blue.
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Example: edge coloring Kn: analysis

Write Ij = 1 (triangle j is monochromatic).

Number of monochromatic triangles is then X =
∑(n

3)
j=1 Ij

E [X] =
∑(n

3)
j=1

1
4 = 1

4
(n

3
)
= n(n−1)(n−2)

24

There is a coloring with X ≤ E [X].
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How to construct such a coloring?

Method of conditional expectations:
▶ Toss your coins one by one.
▶ Take care to be on the right side of luck each time!

How to choose I1 to be red or blue?

E [X] = E [X | I1 = red] 1
2 + E [X | I1 = blue] 1

2

so one of E [X | I1 = red], E [X | I1 = blue] is ≤ E [X].

Calculate and choose that one!
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The method of conditional expectations

Having chosen I1 = c1, . . . , Ik = ck we have

E [X | I1 = c1, . . . , Ik = ck] =

E [X | I1 = c1, . . . , Ik = ck, Ik+1 = red] 1
2+

E [X | I1 = c1, . . . , Ik = ck, Ik+1 = blue] 1
2

Choose the color Ik+1 = ck+1 so as to have

E [X | I1 = c1, . . . , Ik = ck, Ik+1 = ck+1] ≤ E [X | I1 = c1, . . . , Ik = ck]

In the end

E [X | I1 = c1, . . . , In = cn] ≤ E [X] = 1
4

(
n
3

)
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Additive bases for the integers

E ⊆ N = {1, 2, . . .}

Representation function:
rE(x) =

∣∣{(a, b) ∈ E2 : x = a + b, a ≤ b
}∣∣

= in how many ways we can write x = e1 + e2

E is Additive basis:
for x ≥ 2 we have rE(x) > 0. E.g. E = {1, 2, 4, 6, . . .}.

E is Asymptotic additive basis:
for all suffiently large x ∈ N we have rE(x) > 0.

General problem:
find thin (asymptotic additive) bases

(small but positive rE(x))
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Thin asymptotic additive bases

Theorem (Erdős 1956)
There are constants c1, c2 > 0, set E ⊆ N and integer x0 such that

c1 ln x ≤ rE(x) ≤ c2 ln x, (x ≥ x0).

Probabilistic proof.

Open problems:
(a) Can the function ln x be reduced?
(b) Can we achieve the existence of limx→∞

rE(x)
ln x ?

(c) Non-probabilistic proof?
Conjecture (Erdős–Turán)
If for E ⊆ N we eventually have rE(x) > 0 then

lim sup
x→∞

rE(x) = ∞.
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A random set of natural numbers

K > 0 is a constant to be determined later.

Define the probabilities (for x = 1, 2, . . .)

px =

{
K
(
ln x
x
)1/2 if this is in ∈ [0, 1]

0 else
.

Define the random set E ⊆ N by taking

P [x ∈ E] = px, (x ∈ N)

independently for all x ∈ N.

In other words, we toss a coin for each natural number.
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The representation function

We show P [our set has the required property] > 0.

Define RVs χj = 1 (j ∈ E), for j ∈ N. Independent with E [χj] = pj.

For the representation function we have

rE(x) =
⌊x/2⌋∑
j=1

χjχx−j.

rE(x): sum of independent 0 – 1 valued RVs.
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The Chernoff large deviation inequality
X1, . . . ,XN independent 0 – 1 valued RVs and S = X1 + · · ·+ XN,
µ = E [S]. For ϵ > 0 we have

P [|S − µ| ≥ ϵµ] ≤ 2e−cϵµ,

where
0 < cϵ = min

{
ϵ2/2,− ln

(
eϵ(1 + ϵ)−(1+ϵ)

)}
depends only on ϵ.

Exponential dependence on µ:
due to structure of S as a sum of independent RVs.

Very easy to use for combinatorial problems. Only need to know µ.

Larger µ: better inequality
⇒ RVs S with large µ are easier to control.
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Calculate the mean value

Let pj ̸= 0 for j ≥ j0 and pj = 0 for j < j0.

For x odd and large (similarly for x even):

E [rE(x)] =

⌊x/2⌋∑
j=1

E [χjχx−j]

=

⌊x/2⌋∑
j=1

E [χj]E [χx−j] (x odd ⇒ j ̸= x − j, independence)

=

⌊x/2⌋∑
j=j0

pjpx−j

=

⌊x/2⌋∑
j=j0

K2
(
ln j ln(x − j)

j(x − j)

)1/2
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Calculate the mean value (continued)

E [rE(x)] =
∑⌊x/2⌋

j=j0 K2
(
ln j ln(x−j)

j(x−j)

)1/2

Upper bound: E [rE(x)] ≤ K2 ln x
∑⌊x/2⌋

j=1

(
1

j(x−j)

)1/2

Lower bound: E [rE(x)] ≥ K2
4 ln x

∑⌊x/2⌋
j=√x

(
1

j(x−j)

)1/2
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Calculate the mean value (continued)

But for x → ∞:
⌊x/2⌋∑
j=1

(
1

j(x − j)

)1/2
=

⌊x/2⌋∑
j=1

1
x

(
1

j
x(1 − j

x)

)1/2

→
∫ 1/2

0

(
1

s(1 − s)

)1/2
ds

(Riemann sum for I =
∫ 1/2

0

(
1

s(1−s)

)1/2
ds)

Similarly
∑⌊x/2⌋

j=√x

(
1

j(x−j)

)1/2
→ I =

∫ 1/2
0

(
1

s(1−s)

)1/2
ds

So, for large x we have the right order of magnitude:

IK2

8 ln x ≤ E [rE(x)] ≤ 2IK2 ln x.
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Control the deviation of the RVs

Bad events: Ax = {|rE(x)− E [rE(x)]| ≥ ϵE [rE(x)]}
with ϵ = 1

2 .

By Chernoff’s inequality:

P [Ax] ≤ 2e−cϵE[rE(x)]

≤ 2e−cϵC1 ln x

= 2x−C1cϵ

= 2x−cϵIK2/8.

Choose K so that the exponent cϵIK2/8 > 1. It follows that
∞∑

x=1
P [Ax] ≤

∞∑
x=1

2x−cϵIK2/8 < ∞.
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Control the deviation of the RVs (continued)

Convergence of
∑

x P [Ax] ⇒ there is x0 such that∑
x≥x0

P [Ax] <
1
2 ,

so that with probability ≥ 1/2 none of the Ax, x ≥ x0 holds.

For x ≥ x0:
rE(x) ≥

1
2E [rE(x)] ≥

IK2

16 ln x

and
rE(x) ≤

3
2E [rE(x)] ≤ 3IK2 ln x.
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How to derandomize?

Can we produce a good additive basis E by listing its elements one
by one?

Not clear we can do so, however slowly.

Tricky point:
our choice for n ∈ E affects the representation function forever.
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A modified probabilistic proof

For g(x) = (x log x)1/2 define the modified representation function

r′(x) = |{(a, b) ∈ E2 : x = a + b & g(x) ≤ a ≤ b}|.

Deciding n ∈ E only affects

r′(x) for x ≤ G(n),

where
G(n) = g−1(n) ∼ n2

log n .
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A modified probabilistic proof, continued

Also observe that

r′(x) ≤ r(x) ≤ r′(x) + s(x),

where
s(x) = |E ∩ [x − g(x), x]|.

One can (as in Erdős’ proof) calculate easily

E
[
r′(x)

]
∼ CK2 log x

and
E [s(x)] ∼ K log x,

and the expectations of the r.v.’s r(x) and s(x) have the right order
of magnitude.
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A modified probabilistic proof, continued

The bad events are

Ax =

{
|r′(x)− E

[
r′(x)

]
| > 1

2E
[
r′(x)

]}

Bx =

{
s(x)− E [s(x)] > 1

2E [s(x)]
}
.

Chernoff Large Deviation Lemma gives

P [Ax] ≤ 2x−α

and
P [Bx] ≤ 2x−β.

Can make α, β > 1 by choosing K large.



21/26

A modified probabilistic proof, continued
We have

∞∑
x=n0

P [Ax] + P [Bx] < 1 for some n0.

We get a set E with
1
2E
[
r′(x)

]
≤ r′(x) ≤ 3

2E
[
r′(x)

]
and

s(x) ≤ 3
2E [s(x)] .

Together these imply

C1 log x ≤ r(x) ≤ C2 log x

for x ≥ n0.

This concludes the alternative probabilistic proof of Erdős’
theorem.
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Derandomizing the proof. The strategy.

We showed that for some n0 ∈ N the complement of the bad event

B =
∪

x≥n0

(Ax ∪ Bx)

has positive probability, since∑
x≥n0

P [Ax] + P [Bx] < 1.

Have to construct a “point” (set of integers) E /∈ B.

At the n-th step we output 1 or 0 to denote n ∈ E or not.

Will take time polynomial in n to enumerate to n.
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Derandomizing the proof. Restriction event.

Let the RVs χj = 1 (j ∈ E).

Restriction event: R(a1, . . . , an) = {χ1 = a1, . . . , χn = an}.

Goal: Pick the an successively so that

b(a1, . . . , an) :=
∑
x≥n0

P [Ax | R(a1, . . . , an)] + P [Bx | R(a1, . . . , an)]

is non-increasing.

If so then
E = (a1, a2, . . .)

is in no bad event.
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Derandomizing the proof. Deciding the next
n ∈ E.

If pn = P [n ∈ E] in our probabilistic proof then

b(a1, . . . , an−1) = pnb(a1, . . . , an−1, 1) + (1 − pn)b(a1, . . . , an−1, 0)

by the law of total probability.

Hence one of b(a1, . . . , an−1, 1), b(a1, . . . , an−1, 0) is

≤ b(a1, . . . , an−1).

How to find which?
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Derandomizing the proof. Deciding if n ∈ E.

We have to compute efficiently the sign of

∆ = b(a1, . . . , an−1, 1)− b(a1, . . . , an−1, 0)

=

G(n)∑
x=n

P [Ax | R(a1, . . . , an−1, 1)]− P [Ax | R(a1, . . . , an−1, 0)]+

+ P [Bx | R(a1, . . . , an−1, 1)]− P [Bx | R(a1, . . . , an−1, 0)].

Thanks to the modified representation function (remember
G(n) = g−1(n) ∼ n2

log n)

r′(x) = |{(a, b) ∈ E2 : x = a + b & g(x) ≤ a ≤ b}|.

this is a finite sum with a polynomial number of terms.
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The end

Thanks for your attention.


