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Abstract

We examine the Erdos distinct distance problem on compact Riemannian 2-manifolds. We prove that on a compact Riemannian

manifold, a set of 𝑛 points determines at least 𝐶𝑀

√

𝑛 distinct distances for some constant 𝐶𝑀 depending only on 𝑀 and for 𝑛 large enough.

In the process, we prove several results about geodesic existence and regularity, along with results about perturbations of Euclidean metrics.

We finally describe a possible application of the Erdos problem to spectral sets on Riemannian manifolds similar to that in the Euclidean

case.
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1 Introduction and History

1.1 History of Problem

For a finite set 𝑃 ⊆ ℝ2, let

Δ(𝑃 ) = {|𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝑃 }

We call Δ(𝑃 ) the distance set associated with 𝑃 , as Δ(𝑃 ) is the set of all distinct distances associated with the points in 𝑃 . In 1946, Paul

Erdos studied how |Δ(𝑃 )| depends on |𝑃 |. More precisely, he proved that, for large enough 𝑛, there exists a constant 𝐶 independent of

𝑛 such that for any 𝑃 ⊆ ℝ2 with |𝑃 | = 𝑛 we have the bound

|Δ(𝑃 )| ≥ 𝐶𝑛1∕2

In this same paper, he proved that if 𝑔(𝑛) is the minimum size of Δ(𝑃 ) ranging over all subsets 𝑃 in the plane with 𝑛 points, then

𝑔(𝑛) ≤ 𝐶 ′𝑛
√

log 𝑛

for large enough 𝑛 by considering a square grid with size length
√

𝑛. In short, Erdos proved we have

𝐶
√

𝑛 ≤ 𝑔(𝑛) ≤ 𝐶 ′𝑛
√

log 𝑛

for large enough 𝑛. One can also obtain the trivial bound 𝑔(𝑛) ≤ 𝑛 by taking 𝑛 points equally spaced on a line. The study of the minimal

size of Δ(𝑃 ) for finite sets in the plane, known as the Erdos distance problem, has been primarily focused on improving the lower bound
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for |Δ(𝑃 )| (and thus for 𝑔(𝑛)). It is currently conjectured that

𝑔(𝑛) ≥ 𝐶 𝑛
√

log 𝑛

for large enough 𝑛. Since 1946, there have been significant improvements in Erdos’s original lower bound. In 1952, Leo Moser proved

in [8] that

𝑔(𝑛) ≥ 𝐶𝑛2∕3

The most recent bound is due to Larry Guth and Netz Katz in 2015 ([4]), and says that

𝑔(𝑛) ≥ 𝐶 𝑛
log 𝑛

There of course have been several successive improvements in the lower bound between 1952 and 2015, however, in this paper, we will

concern ourselves only with the 𝑛1∕2 in the body of the paper, and with a brief discussion of the 𝑛2∕3 bound in the final section.

The Erdos distance problem has also been extended to finite subsets of ℝ𝑑 for 𝑑 ≥ 2. Using the same notation as above, it is known

that for any subset 𝑃 ⊆ ℝ𝑑 with |𝑃 | = 𝑛

|Δ(𝑃 )| ≥ 𝐶𝑑𝑛
1
𝑑 +𝜀

for some fixed 𝜀 > 0 independent of 𝑑 and 𝑃 . In fact, there is a stronger result stating that

|Δ(𝑃 )| ≥ 𝐶𝑑𝑛
3

3𝑑−2

(Theorem 12.13 in [9]).

1.2 Applications to Harmonic Analysis

The Erdos distance problem, while being an interesting geometric problem, has also been useful in harmonic analysis, and we will briefly

discuss its application here. If 𝐷 ⊆ ℝ𝑑 has finite non-zero Lebesgue measure, 𝐷 is said to be spectral if 𝐿2(𝐷) has an orthogonal basis

of exponentials. The authors of [5] used the result

|Δ(𝑃 )| ≥ 𝐶𝑑𝑛
1
𝑑 +𝜀

to show that any affine image of 𝐵𝑑 = {𝑥 ∈ ℝ𝑑 ∶ |𝑥| ≤ 1} is not spectral.

1.3 Notation, Results, and Outline of Paper

If (𝑀,𝑔) is a Riemannian manifold, let 𝑑𝑔 denote the usual distance function on 𝑀 associated to the metric 𝑔. If 𝑃 ⊆ 𝑀 is finite, define

Δ𝑔(𝑃 ) = {𝑑𝑔(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝑃 }
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We will study lower bounds for |Δ(𝑃 )| specifically in the case when 𝑀 is compact and dim𝑀 = 2. In this paper, we transport the

original Erdos bound to this setting, and discuss ways to transport Moser’s bound. We prove the following result:

Theorem Let (𝑀,𝑔) be a compact connected Riemannian 2-manifold. Then, there exists constants 𝐶𝑀 and 𝑛0 such that, if 𝑃 ⊆ 𝑀 is a

finite subset with 𝑛 = |𝑃 | ≥ 𝑛0, then

|Δ𝑔(𝑃 )| ≥ 𝐶𝑀𝑛1∕2

We begin by presenting proofs of both the Erdos bound in the plane. We then develop preliminary machinery to prove our principal

result. We prove the Banach fixed point theorem, discuss spaces of 𝐶1 functions, and discuss the necessary Riemannian geometry for

our problem. We then spend time getting specific regularity results for solutions to the geodesic equation. In Section 4, we then present

a brief outline of our argument, give a preliminary perturbation argument, and then prove our main theorem. We then discuss further

work that could be done on this topic, namely work in higher dimensions, Moser’s bound, and application to spectral sets on manifolds.

2 𝑛1∕2 Bound in the Plane

In this section, we present a proof of the 𝑛1∕2 bound for the Erdos distace problem in the plane. While several proofs are known ([3] for

other methods of proof), the proof we present is likely the easiest to transport to the manifold setting.

Theorem Suppose 𝑃 ⊆ ℝ2 is a finite with |𝑃 | ≥ 2, then

|Δ(𝑃 )| ≥ |𝑃 |1∕2

2

PROOF: Our proof will be from [3].Let 𝑛 ≥ 2 and let 𝑃 ⊆ ℝ2 be a set with 𝑛 points. Fix a 𝑝0 ∈ 𝑃 , and let

𝐴𝑝0 = {|𝑝 − 𝑝0| ∶ 𝑝 ∈ 𝑃 }

Let 𝑘 = |𝐴𝑝0 | and note that 𝑘 ≥ 2 since |𝑃 | ≥ 2. Let 𝐶𝑟 denote the circle centered at 𝑝0 of radius 𝑟 (for 𝑟 > 0). Consider the collection

of circles 𝐶𝑡 for 𝑡 ∈ 𝐴𝑝0 ⧵ {0}. Then, by the pigeonhole principle, there must exist a 𝑡0 ∈ 𝐴𝑝0 ⧵ {0} such that

|𝑃 ∩ 𝐶𝑡0 | ≥
𝑛 − 1
𝑘 − 1

≥ 𝑛 − 1
𝑘

≥ 𝑛
2𝑘

where the last inequality follows since 𝑛−1 ≥ 𝑛∕2 as 𝑛 ≥ 2. Bisect 𝐶𝑡0 via the line passing through 𝑝0 which is parallel to the 𝑥-coordinate

axis. Then, we see that we must have at least 𝑛∕4𝑘 points on either the northern half or on the southern half. Without loss of generality,

assume that there are at least 𝑛∕4𝑘 points on the northern half. Let 𝑝 be the right most point in 𝑃 on this half of 𝐶𝑡0 . By considering

distances from 𝑝 to the points of 𝑃 which are contained on this half of the circle, we see that there are at least 𝑛∕4𝑘 distinct distances on

this portion of 𝐶𝑡0 (this includes the distance from 𝑝 to itself). Therefore, we have that

|Δ(𝑃 )| ≥ max{𝑘, 𝑛∕4𝑘} ≥
√

𝑘
√

𝑛
4𝑘

= 𝑛1∕2

2
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◭

Remark. Our argument relies on the fact that Euclidean distances from a point on a circle increase as one moves along half of said circle.

More precisely, fix a circle centered at any point of radius 𝑑, and parameterize this circle by 𝜃. Fixing a point 𝜃0 on this circle, we consider

its distance between another point 𝜃 on this circle which can easily be computed to be

𝑑
√

2
√

1 − cos
(

𝜃 − 𝜃0
)

In particular, if we consider this as a function of 𝜃 on the interval [𝜃0, 𝜃0 + 𝜋], this function is strictly increasing. Transporting this

type of argument to the Riemannian setting will turn out to be the biggest hurdle. Indeed, we will see later that it is easier to work on

[𝜃0, 𝜃0 + 𝜋∕2] instead, to ensure distances increase.

3 Technical Preliminaries

3.1 Banach Fixed Point Theorem

We will begin by proving a classical fixed point theorem for contractions on complete metric spaces.

Definition Let (𝑋, 𝑑) be a metric space. We say a function 𝑓 ∶ 𝑋 → 𝑋 is a contraction if there exists 𝐶 ∈ [0, 1) such that, for each

𝑥, 𝑦 ∈ 𝑋

𝑑(𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐶𝑑(𝑥, 𝑦)

Remark. It is clear that any contraction is continuous. Indeed, suppose 𝑓 ∶ 𝑋 → 𝑋 is a contraction with constant 𝐶 ∈ [0, 1), and let

𝜀 > 0. Fixing 𝑎 ∈ 𝑋, we see that

𝑑(𝑓 (𝑥), 𝑓 (𝑎)) ≤ 𝐶𝑑(𝑥, 𝑎) ≤ 𝑑(𝑥, 𝑎) < 𝜀

whenever 𝑑(𝑥, 𝑎) < 𝜀. This gives continuity at 𝑎 ∈ 𝑋. Since 𝑎 ∈ 𝑋 was arbitrary, we obtain global continuity.

Theorem (Banach Fixed Point Theorem): Let (𝑋, 𝑑) be a non-empty complete metric space, and suppose 𝑓 ∶ 𝑋 → 𝑋 is a contraction.

Then 𝑓 has a unique fixed point, i.e, there exists a unique 𝑥0 ∈ 𝑋 such that 𝑓 (𝑥0) = 𝑥0

PROOF: Uniqueness is trivial, for assume that 𝑥0, 𝑥′0 are fixed points for 𝑓 . We then have

𝑑(𝑥0, 𝑥′0) = 𝑑(𝑓 (𝑥0), 𝑓 (𝑥′0)) ≤ 𝐶𝑑(𝑥0, 𝑥′0)

If 𝑥0 ≠ 𝑥′0, then this says that

𝑑(𝑥0, 𝑥′0) < 𝑑(𝑥0, 𝑥′0)

as 𝐶 ∈ [0, 1) and 𝑑(𝑥0, 𝑥′0) ≠ 0, which is absurd. Therefore, if 𝑓 has a fixed point, it must be unique.
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We now must prove that 𝑓 has a fixed point. Fix 𝑥 ∈ 𝑋. Define the sequence

𝑥𝑛 = 𝑓 𝑛(𝑥)

where 𝑓 𝑛 denotes the 𝑛-fold composition of 𝑓 with itself. We note that if 𝑘 is a positive integer, induction easily shows that

𝑑(𝑓𝑘(𝑥), 𝑥) ≤
𝑘−1
∑

𝑖=0
𝐶 𝑖𝑑(𝑓 (𝑥), 𝑥) ≤ 𝑑(𝑓 (𝑥), 𝑥)

∞
∑

𝑖=0
𝐶 𝑖 =

𝑑(𝑓 (𝑥), 𝑥)
1 − 𝐶

since 𝐶 ∈ [0, 1). Let 𝜀 > 0. Choose 𝑁 ∈ ℤ+ such that

𝐶𝑁𝑑(𝑓 (𝑥), 𝑥)
1 − 𝐶

< 𝜀

(which we may do since 0 ≤ 𝐶 < 1). We then see that, if 𝑁 ≤ 𝑚 < 𝑛, we have

𝑑(𝑓 𝑛(𝑥), 𝑓𝑚(𝑥)) ≤ 𝐶𝑚𝑑(𝑓 𝑛−𝑚(𝑥), 𝑥) ≤ 𝐶𝑚𝑑(𝑓 𝑛−𝑚(𝑥), 𝑥) ≤ 𝐶𝑚𝑑(𝑓 (𝑥), 𝑥)
1 − 𝐶

≤ 𝐶𝑁𝑑(𝑓 (𝑥), 𝑥)
1 − 𝐶

< 𝜀

if 𝑚 ≠ 𝑛. Since 𝜀 > 0 was arbitrary, this shows that {𝑥𝑛} is Cauchy, and thus converges to some 𝑥0 ∈ 𝑋. Since 𝑓 is continuous as it is a

contraction, we have that

𝑓 (𝑥0) = 𝑓 ( lim
𝑛→∞

𝑥𝑛) = lim
𝑛→∞

𝑓 (𝑥𝑛) = lim
𝑛→∞

𝑥𝑛+1 = 𝑥0

showing that 𝑥0 is a fixed point of 𝑓 . ◭

3.2 Spaces of 𝐶1 Functions

We recall the definition of a Banach Space:

Definition Let (𝑉 , || ⋅ ||) be a normed vector space. We say that (𝑉 , || ⋅ ||) is a banach space if 𝑉 is a complete metric space under the

metric induced by || ⋅ ||, i.e, if 𝑉 is a complete metric space with the metric given by

𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦||

We will primarily concern ourselves with a specific class of Banach spaces, namely those consisting of 𝐶1 functions defined on a

compact interval. More specifically, let

𝐶1([𝑎, 𝑏],ℝ𝑘)

be the set of all continuously differentiable functions defined on [𝑎, 𝑏] with values in ℝ𝑘. We define a norm on this space as follows

||𝑓 ||𝐶1 = sup |𝑓 | + sup |𝑓 ′
|

for 𝑓 ∈ 𝐶1([𝑎, 𝑏],ℝ𝑘). We call this the 𝐶1 norm. Note that this is well defined and always finite by continuity of 𝑓 and 𝑓 ′, along with
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the compactness of [𝑎, 𝑏]. We must show that this is indeed a norm. Clearly ||𝑓 ||𝐶1 ≥ 0. Moreover, since sup |𝑓 | and sup |𝑓 ′
| are

both non-negative, we see that ||𝑓 ||𝐶1 = 0 if and only if both sup |𝑓 | = 0 and sup |𝑓 ′
| = 0. If 𝑓 = 0, then clearly sup |𝑓 | = 0 and

sup |𝑓 ′
| = 0. Conversely, if sup |𝑓 | = 0 and sup |𝑓 ′

| = 0, then, by definition, we have that |𝑓 (𝑥)| ≤ 0 for each 𝑥 ∈ [𝑎, 𝑏], and therefore

𝑓 = 0. Thus, positive definiteness has been proven. To show homogeneity, note that if 𝑏 ≥ 0, and 𝑔 ∶ [𝑎, 𝑏] → ℝ is bounded, we have

sup(𝑏𝑔) ≤ 𝑏 sup 𝑔

To see this, we have

(𝑏𝑔)(𝑥) = 𝑏𝑔(𝑥) ≤ 𝑏 sup 𝑔

for each 𝑥 ∈ [𝑎, 𝑏], giving the desired result. Applying this result to |𝑎||𝑓 | = |𝑎𝑓 | and |𝑎||𝑓 ′
| = |𝑎𝑓 ′

| = |(𝑎𝑓 )′| for 𝑓 ∈ 𝐶1([𝑎, 𝑏],ℝ𝑘)

and 𝑎 ∈ ℝ, we see that

||𝑎𝑓 ||𝐶1 = sup |𝑎𝑓 | + sup |𝑎𝑓 ′
| ≤ |𝑎| sup |𝑓 | + |𝑎| sup |𝑓 ′

| = |𝑎| ⋅ ||𝑓 ||𝐶1

Finally to show the triangle inequality, suppose that 𝑔, ℎ ∶ [𝑎, 𝑏] → ℝ are bounded functions. Then, for each 𝑥 ∈ [𝑎, 𝑏], we have

(𝑔 + ℎ)(𝑥) = 𝑔(𝑥) + ℎ(𝑥) ≤ sup 𝑔 + supℎ

and thus

sup(𝑔 + ℎ) ≤ sup 𝑔 + supℎ

Therefore, if 𝑓1, 𝑓2 ∈ 𝐶1([𝑎, 𝑏],ℝ𝑘), we have

sup |𝑓1 + 𝑓2| ≤ sup(|𝑓1| + |𝑓2|) ≤ sup |𝑓1| + sup |𝑓2|

sup |(𝑓1 + 𝑓2)′| = sup |𝑓 ′
1 + 𝑓 ′

2| ≤ sup(|𝑓 ′
1| + |𝑓 ′

2|) ≤ sup |𝑓 ′
1| + sup |𝑓 ′

2|

where we have leveraged the triangle inequality along with the monotonicity of the supremum. Therefore

||𝑓1 + 𝑓2||𝐶1 ≤ ||𝑓1||𝐶1 + ||𝑓2||𝐶1

as desired. Therefore 𝐶1([𝑎, 𝑏],ℝ𝑘) along with the above norm is indeed a normed vector space. However, we have a much stronger

result, namely that this space is a Banach space.

Theorem The space 𝐶1([𝑎, 𝑏],ℝ𝑘) along with the 𝐶1 norm is a Banach space

PROOF: Note that 𝐶1([𝑎, 𝑏],ℝ𝑘) is indeed a vector space and the 𝐶1 norm is indeed a norm. We will thus show completeness. Suppose

{𝑓𝑛} is a Cauchy sequence of functions in 𝐶1([𝑎, 𝑏],ℝ𝑘). Let 𝜀 > 0. Then, by definition, there exists 𝑁 such that, if 𝑛, 𝑚 ≥ 𝑁

||𝑓𝑚 − 𝑓𝑛||𝐶1 = sup |𝑓𝑛 − 𝑓𝑚| + sup |𝑓 ′
𝑛 − 𝑓 ′

𝑚| < 𝜀
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In particular, for 𝑛, 𝑚 ≥ 𝑁

sup |𝑓𝑛 − 𝑓𝑚| < 𝜀

sup |𝑓 ′
𝑛 − 𝑓 ′

𝑚| < 𝜀

Since 𝜀 > 0 was arbitrary, it follows that the 𝑓𝑛 converge uniformly in absolute value to some function 𝑓 on [𝑎, 𝑏] and the 𝑓 ′
𝑛 converge

uniformly in absolute value to some function 𝑔 on [𝑎, 𝑏]. A theorem from undergraduate analysis shows that 𝑔 is continuous on [𝑎, 𝑏], and

a similar theorem shows that 𝑓 is differentiable on [𝑎, 𝑏] with 𝑓 ′ = 𝑔 (see [10]). Thus, we see that 𝑓 ∈ 𝐶1([𝑎, 𝑏],ℝ𝑘). We now verify

that the 𝑓𝑛 converge to 𝑓 in the 𝐶1 norm. Let 𝜀 > 0. By uniform convergence of 𝑓𝑛 → 𝑓 and 𝑓 ′
𝑛 → 𝑓 ′, there exists 𝑁 such that if 𝑛 ≥ 𝑁

sup |𝑓𝑛 − 𝑓 | < 𝜀
2

sup |𝑓 ′
𝑛 − 𝑓 ′

| < 𝜀
2

Thus, if 𝑛 ≥ 𝑁 , we have

||𝑓𝑛 − 𝑓 ||𝐶1 = sup |𝑓𝑛 − 𝑓 | + sup |𝑓𝑛 − 𝑓 ′
| < 𝜀

and thus 𝑓𝑛 → 𝑓 in 𝐶1. ◭

Remark. If 𝑋 ⊆ ℝ𝑛 is non-empty and 𝑓 ∶ 𝑋 → ℝ𝑘 is differentiable, we may define

||𝑓 ||𝐶1 = sup |𝑓 | + sup |𝐷𝑓 |

where |𝐷𝑓 | denotes the Frobenius norm of the matrix 𝐷𝑓 (see section 3.4). We note that ||𝑓 ||𝐶1 may be infinite. If we define 𝐶1(𝑋,ℝ𝑘)

to be the set of 𝐶1 functions from 𝑋 → ℝ𝑘 with finite 𝐶1 norm, then 𝐶1(𝑋,ℝ𝑘) is a real vector space and || ⋅ ||𝐶1 is a norm on 𝑋 (the

proof of this is nearly identical to the proof given above). While 𝐶1(𝑋,ℝ𝑘) is not a Banach space in general, it is a topological vector

space, and we will use this in section 3.4. Our definition of 𝐶1([𝑎, 𝑏],ℝ𝑘) given above is clearly consistent with this generalization.

3.3 Basics of Riemannian Geometry

In this section, we will review much of the Riemannian geometry we will need for our problem.

3.3.1 Riemannian Metrics

Definition Let 𝑀 be a smooth manifold. A Riemannian metric 𝑔 on 𝑀 is a smooth, symmetric, positive definite section of 𝑇 ∗𝑀⊗𝑇 ∗𝑀 .

If 𝑔 is a Riemannian metric on 𝑀 , the pair (𝑀,𝑔) is said to be a Riemannian manifold

Unpacking this definition, we see that a Riemannian metric 𝑔 on 𝑀 defines an inner product 𝑔𝑝 on 𝑇𝑝𝑀 at each point 𝑝 ∈ 𝑀 , and

this choice of inner product varies smoothly. For brevity, we will often call 𝑔 a metric on 𝑀 . Such a metric is not to be confused with

metrics in the sense of metric spaces. When referring to a metric on a metric space, we will instead use the term distance function.
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If (𝑈, 𝑥𝑖) is a chart at 𝑝, then we have the following expression for 𝑔 in this chart

𝑔 = 𝑔𝑖𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗

where

𝑔𝑖𝑗 = 𝑔(𝜕𝑖, 𝜕𝑗)

We note that the 𝑔𝑖𝑗 are smooth functions on 𝑈 .

Given a smooth curve 𝛾 ∶ 𝐼 → 𝑀 , if [𝑎, 𝑏] ⊆ 𝐼 , we define

𝓁𝑏
𝑎(𝛾) = ∫

𝑏

𝑎
||𝛾 ′(𝑡)||𝑑𝑡

where

||𝛾 ′(𝑡)|| =
√

𝑔𝛾(𝑡)(𝛾 ′(𝑡), 𝛾 ′(𝑡))

If [𝑎, 𝑏] = 𝐼 , we will often write 𝓁(𝛾) instead of 𝓁𝑏
𝑎(𝛾).

If (𝑀,𝑔) is connected (and therefore path connected), then it is well known that any two points on 𝑀 can be connected by a smooth

curve. For 𝑝, 𝑞 ∈ 𝑀 , we define 𝑑𝑔 ∶ 𝑀 ×𝑀 → ℝ

𝑑𝑔(𝑝, 𝑞) = inf
𝛾∈

𝓁(𝛾)

where

 = {𝛾 ∶ 𝛾 is a smooth curve from 𝑝 to 𝑞}

We have the following theorem proven in [2] and [7]:

Theorem If (𝑀,𝑔) is a Riemannian manifold, then 𝑑𝑔 is a distance function on 𝑀 whose induced metric topology agrees with the

topology on 𝑀

3.3.2 Levi-Civita Connection and the Covariant Derivative

The main goal of this section is to describe the Levi-Civita connection on a Riemannian manifold. We will begin by briefly describing the

notion of an affine connection, which gives us a notion of how to differentiate a vector field with respect to another vector field. We will

also discuss how such a connection allows us to differentiate vector fields along curves. We will then restrict ourselves to the Riemannian

setting, describing a unique affine connection associated with a Riemannian manifold, which is known as the Levi-Civita connection.

We denote the set of smooth vector fields on a manifold by (𝑀).

On an open subset 𝑈 of ℝ𝑛, one may naturally view a smooth vector field as simply a smooth function from ℝ𝑛 → ℝ𝑛. Doing so, we

see that if 𝑋 = (𝑋1, ..., 𝑋𝑛) and 𝑌 = (𝑌 1, ..., 𝑌 𝑛) are smooth vector fields on 𝑈 , we may define the following vector field

𝐷𝑋𝑌 = (𝑋 ⋅ ∇𝑌 1, ...., 𝑋 ⋅ ∇𝑌 𝑛)
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which we view as differentiating 𝑌 along 𝑋. We have thus defined an operator 𝐷 ∶ (ℝ𝑛)×(ℝ𝑛) → (ℝ𝑛). It is clear that this operator

satisfies the following properties:

1. If 𝑋, 𝑌 ,𝑍 ∈ (ℝ𝑛) and 𝑓 ∈ 𝐶∞(ℝ𝑛) then

𝐷𝑓𝑋+𝑌𝑍 = 𝑓𝐷𝑋𝑍 +𝐷𝑌𝑍

2. If 𝑋, 𝑌 ,𝑍 ∈ (ℝ𝑛) and if 𝑓 ∈ 𝐶∞(ℝ𝑛) then

𝐷𝑋(𝑓𝑌 +𝑍) = 𝑓𝐷𝑋𝑌 + (𝑋 ⋅ ∇𝑓 )𝑌 +𝐷𝑋𝑍

In other words, 𝐷 is an ℝ bi-linear map which is 𝐶∞(ℝ𝑛) linear in the first coordinate and satisfies a Leibniz rule in the second coordinate.

This motivates the following definition:

Definition Let 𝑀 be a smooth manifold. An affine connection on 𝑀 is a bi-linear map ∇ ∶ (𝑀) × (𝑀) → (𝑀) such that

1): For each 𝑓 ∈ 𝐶∞(𝑀) and 𝑋, 𝑌 ∈ (𝑀)

∇𝑓𝑋𝑌 = 𝑓∇𝑋𝑌

2): For each 𝑓 ∈ 𝐶∞(𝑀) and 𝑋, 𝑌 ∈ (𝑀)

∇𝑋(𝑓𝑌 ) = 𝑓∇𝑋𝑌 + (𝑋𝑓 )𝑌

where we write ∇𝑋𝑌 for ∇(𝑋, 𝑌 )

As an example, our function 𝐷 is an affine connection on ℝ𝑛 (and we will soon see that it is an example of an important type of affine

connection).

Given an affine connection ∇, one can show that ∇𝑋𝑌
|

|

|𝑝
depends only on 𝑋𝑝 and a the behavior of 𝑌 in an arbitrarily small neigh-

borhood of 𝑝. One can then use this fact as follows: given a chart (𝑈, 𝑥𝑖) at 𝑝, one can consider the vector field ∇𝜕𝑖𝜕𝑗 on 𝑈 . Since the 𝜕𝑘

form a basis for the set of all smooth vector fields on 𝑈 , we may write

∇𝜕𝑖𝜕𝑗 = Γ𝑘𝑖𝑗𝜕𝑘

The functions Γ𝑘𝑖𝑗 on 𝑈 are called Christoffel symbols.

Affine connections also give us a way to differentiate vector fields defined along smooth curves. Given a smooth curve 𝛾 ∶ 𝐼 → 𝑀 , a

smooth vector field along 𝛾 is a smooth mapping 𝑉 ∶ 𝐼 → 𝑇𝑀 such that 𝑉 (𝑡) ∈ 𝑇𝛾(𝑡)𝑀 for each 𝑡 ∈ 𝐼 . We have the following theorem:

Theorem Let 𝑀 be a smooth manifold with affine connection ∇. Then, given a smooth curve 𝛾 ∶ 𝐼 → 𝑀 , there exists a unique

correspondance which associates to a smooth vector field 𝑉 along 𝛾 to a smooth vector field 𝐷𝑡𝑉 along 𝛾 with the following properties:

1): 𝐷𝑡(𝑉 +𝑊 ) = 𝐷𝑡𝑉 +𝐷𝑡𝑊

2): 𝐷𝑡(𝑓𝑉 ) = (𝑓 ′)𝑉 + 𝑓𝐷𝑡𝑉 for any smooth function 𝑓 ∶ 𝐼 → ℝ
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3): If 𝑉 is induced by a vector field 𝑌 on 𝑀 (in other words, there is some vector field 𝑌 on 𝑀 with 𝑉 (𝑡) = 𝑌𝛾(𝑡) for each 𝑡), then

𝐷𝑡𝑉 = ∇𝛾′𝑌

(where the term on the right hand side is the vector field given by the affine connection)

To prove this, we define 𝐷𝑡𝑉 in a chart. If 𝑉 = 𝑣𝑖𝜕𝑖 and 𝛾 = (𝑥1, ..., 𝑥𝑛) then we define

𝐷𝑡𝑉 = (𝑣𝑘)′𝜕𝑘 + (𝑥𝑖)′(𝑣𝑗)Γ𝑘𝑖𝑗𝜕𝑘

It is then quick to show that 𝐷𝑡𝑉 is well defined as the expression is invariant under change of coordinates. This gives existence. By

locally extending 𝑉 in a chart, one can also show that such a correspondence with properties 1-3 must have the above local coordinate

definition, which gives uniqueness. We call this assignment the covariant derivative, and it will be of great importance.

There are two special types of affine connections, one which can be defined on general manifolds and one which can be defined only

on Riemannian manifolds. We define these below:

Definition Suppose ∇ is an affine connection on a smooth manifold 𝑀 . We say that ∇ is symmetric if for each 𝑋, 𝑌 ∈ (𝑀) we have

∇𝑋𝑌 − ∇𝑌𝑋 = [𝑋, 𝑌 ]

Definition Suppose ∇ is an affine connection on a Riemannian manifold (𝑀,𝑔). We say that ∇ is compatible with the metric 𝑔 if for

each 𝑋, 𝑌 ,𝑍 ∈ (𝑀) we have

𝑋𝑔(𝑌 ,𝑍) = 𝑔(∇𝑋𝑌 ,𝑍) + 𝑔(𝑌 ,∇𝑋𝑍)

We view symmetry as a measure on how well differentiating a vector fields with respect to each other commutes, and we view

compatibility as a type of product rule. Given a metric compatible affine connection ∇, one can proof that given a smooth curve 𝛾 ∶ 𝐼 →

𝑀 and vector fields 𝑉 ,𝑊 along 𝛾 , we have

𝑑
𝑑𝑡

𝑔(𝑉 ,𝑊 ) = 𝑔(𝐷𝑡𝑉 ,𝑊 ) + 𝑔(𝑉 ,𝐷𝑡𝑊 )

We will use this property implicitly throughout this paper.

With these definitions, we may state the following important theorem, often referred to as the Fundamental Theorem of Riemannian

Geometry:

Theorem Let (𝑀,𝑔) be a Riemannian manifold. Then there exists a unique affine connection ∇ on 𝑀 which is symmetric and compatible

with the metric 𝑔

We call the connection ∇ the Levi-Civita (or Riemannian) connection on (𝑀,𝑔). We for brevity, we will not prove the above theorem.

For proofs, see [2] or [7]. As an example, it is a standard exercise to show that our above operator 𝐷 is the Levi-Civita connection on ℝ𝑛
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with the usual metric given by

𝑔 = 𝛿𝑖𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗

defined in standard coordinates.

3.3.3 Geodesics

Let (𝑀,𝑔) be a Riemannian manifold, and let ∇ be the Levi-Civita connection associated to (𝑀,𝑔). A smooth curve 𝛾 ∶ 𝐼 → 𝑀 is said

to be a geodesic if

𝐷𝑡𝛾
′ = 0

It is important to gain some intuition on this definition, we note that lines 𝑡 ↦ 𝑎𝑡 + 𝑏 have a vanishing second derivative. Noting that

the covariant derivative in Euclidean space is the usual derivative, we see that a geodesic on Euclidean space is exactly a straight line.

Furthermore, noting that in elementary differential geometry, a second derivative is a measurement of curvature, one may interpret the

equation 𝐷𝑡𝛾 ′ = 0 (which is known as the geodesic equation) as saying that one cannot sense the curvature of the curve 𝛾 when one

moves along 𝛾 . In other words, 𝛾 resembles a straight line when one moves along it.

Suppose 𝑝 is a point in 𝛾(𝐼), and (𝑈, 𝑥𝑖) is a chart at 𝑝. Recall the Christoffel symbols associated with a coordinate chart (𝑈, 𝑥𝑖),

which are defined to be the unique smooth functions Γ𝑘𝑖𝑗 on 𝑈 such that

∇𝜕𝑖𝜕𝑗(𝑞) = Γ𝑘𝑖𝑗(𝑞)𝜕𝑘|𝑞

We then have

𝛾 ′(𝑡) = (𝑥𝑖)′(𝑡)𝜕𝑖|𝛾(𝑡)

for 𝑡 such that 𝛾(𝑡) ∈ 𝑈 , where we have written 𝑥𝑖(𝑡) for the 𝑖-th coordinate function of 𝑥◦𝛾(𝑡). Using our local coordinate formula for

the covariant derivative, we see that

𝐷𝑡𝛾
′ = (𝑥𝑘)′′𝜕𝑘 + (𝑥𝑖)′(𝑥𝑗)′Γ𝑘𝑖𝑗𝜕𝑘

We thus obtain the geodesic equation in local coordinates, which is the following system of ordinary differential equations

(𝑥𝑘)′′ + Γ𝑘𝑖𝑗(𝑥
𝑖)′(𝑥𝑗)′ = 0

3.3.4 The Exponential Map and Normal Coordinates

In coordinates, the geodesic equation is a second order ordinary differential equation. If we specify the initial condition and initial

velocity, we can apply existence and uniqueness theory to show that there is a unique solution defined on some interval (−𝛿, 𝛿), where

this interval depends on the initial conditions. If 𝛾 ∶ (−𝛿, 𝛿) → 𝑀 is a geodesic starting at 𝑝 with initial velocity 𝑣 and 𝑠 > 0, then it is

easily shown that the map �̃� ∶ (−𝛿∕𝑠, 𝛿∕𝑠) → 𝑀 defined by

�̃�(𝑡) = 𝛾(𝑠𝑡)
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is the geodesic starting at 𝑝 with initial velocity 𝑠𝑣. In particular, we see that, given 𝑝 ∈ 𝑀 , there exists a 𝛿 > 0 such that for all 𝑣 ∈ 𝑇𝑝𝑀

with |𝑣| < 𝛿, the unique geodesic starting at 𝑝 with initial velocity 𝑣, which we denote by 𝛾𝑝,𝑣, is defined on an interval containing 1. We

may define the map exp𝑝 ∶ 𝐵𝛿(𝑇𝑝𝑀) → 𝑀 by

exp𝑝(𝑣) = 𝛾𝑝,𝑣(1)

By constructing flows on the tangent bundle 𝑇𝑀 , it can be shown that the exponential map is smooth (see [2] or [7] for details). Moreover,

we see that

𝑑(exp𝑝)0(𝑣) =
𝑑
𝑑𝑡

|

|

|𝑡=0
exp𝑝(𝑡𝑣) =

𝑑
𝑑𝑡

|

|

|𝑡=0
𝛾𝑝,𝑡𝑣(1) =

𝑑
𝑑𝑡

|

|

|𝑡=0
𝛾𝑝,𝑣(𝑡) = 𝛾 ′𝑝,𝑣(0) = 𝑣

Thus, the inverse function theorem implies that exp𝑝 is a local diffeomorphism at 0. Therefore, there exists 𝜀𝑝 > 0 such that exp𝑝 is a

diffeomorphism from the ball 𝐵𝜀𝑝 (𝑇𝑝𝑀) onto some open subset of 𝑀 containing 𝑝. From this, we obtain a specialized chart at 𝑝, which

we call normal coordinates at 𝑝. It can be shown that, in normal coordinates, we have

𝑔𝑖𝑗 = 𝛿𝑖𝑗 + (|𝑥|2)

There are several proofs of this and similar results; it follows from Theorem 5.24 of [7], but stronger versions exist as well, see for example

Theorem 2.65 of [1].

3.3.5 Convexity Radius

Throughout this section, we have discussed the interpretation of geodesics as generalizations of straight lines. Keeping this, we may define

notions of convexity on Riemannian manifolds. In particular, if 𝑝 ∈ 𝑀 , and 𝑈 be an open set containing 𝑝, we say that 𝑈 is geodesically

convex if for each 𝑞1, 𝑞2 ∈ 𝑈 , there is a unique distance minimizing geodesic connecting 𝑞1 and 𝑞2 whose image is contained within 𝑈 .

We have the following theorem from [7]:

Theorem Let (𝑀,𝑔) be a Riemannian manifold. Then for each 𝑝 ∈ 𝑀 , there is some 𝜀 > 0 such that the normal ball 𝐵𝜀 centered at 𝑝

is defined and geodesically convex

The above theorem says that each point on a Riemannian manifold has a geodesically convex normal ball centered at that point.

Therefore, we may define 𝑐𝑜𝑛𝑣 ∶ 𝑀 → (0,∞] by

𝑐𝑜𝑛𝑣(𝑝) = sup{𝜀 > 0 ∶ There is a geodesically convex normal ball of radius 𝜀 centered at 𝑝}

It is a fact (see problem 6-6 of [7]) that 𝑐𝑜𝑛𝑣 is a continuous function on 𝑀 . Thus, if 𝑀 is compact, there exists an 𝜀 > 0 such that for

each 𝑝 ∈ 𝑀 , there is a geodesically convex normal ball of radius 𝜀 centered at 𝑝.
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3.4 Smoothness of Geodesics Depending on Initial Conditions

Let us re-examine the geodesic equation in coordinates. Recall that the geodesic equation is given by

(𝑦′′)𝑘 = −Γ𝑘𝑖𝑗(𝑦
𝑖)′(𝑦𝑗)′

Let us define the function Γ ∶ 𝐵𝜀(ℝ𝑛) ×ℝ𝑛 → ℝ𝑛 by the function whose 𝑘-th coordinate is

Γ𝑘(𝑥, 𝑥′) = Γ𝑘𝑖𝑗(𝑥)(𝑥
𝑖)′(𝑥𝑗)′

where we have denoted the coordinate on 𝐵𝜀(ℝ𝑛) ×ℝ𝑛 be (𝑥, 𝑥′). The geodesic equation then becomes

𝑦′′(𝑠) = −Γ(𝑦(𝑠), 𝑦′(𝑠))

If 𝑦(0) = 𝑐 and 𝑦′(0) = 𝑣, we may re-write this as the equivalent integral equation

𝑦(𝑡) = 𝑐 + 𝑡𝑣 − ∫

𝑡

0 ∫

𝑠

0
Γ(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

Thus, we may study geodesics by studying fixed points of the operator

𝑡 ↦ 𝑐 + 𝑡𝑣 − ∫

𝑡

0 ∫

𝑠

0
Γ(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

To begin our study of this operator, we must recall the Frobenius norm of a matrix.

Definition Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑚 matrix. The Frobenius norm of 𝐴, denoted by |𝐴| is defined to be

|𝐴| =
√

∑

𝑖,𝑗
𝑎2𝑖𝑗

Lemma Suppose 𝐴 is an 𝑚 × 𝑛 matrix and 𝑣 ∈ ℝ𝑛. Then

|𝐴𝑣| ≤ |𝐴||𝑣|

PROOF: If

𝑣 = (𝑣1, ..., 𝑣𝑛)𝑇

and

𝐴 = (𝑎𝑖𝑗)
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Then the 𝑘-th component of 𝐴𝑣 is

(𝐴𝑣)𝑘 =
𝑛
∑

𝑗=1
𝑎𝑘𝑗𝑣𝑗

Cauchy-Schwarz then yields

|𝐴𝑣|2 =
𝑛
∑

𝑘=1
(𝐴𝑣)2𝑘 =

𝑛
∑

𝑘=1

( 𝑛
∑

𝑗=1
𝑎𝑘𝑗𝑣𝑗

)2

≤
𝑛
∑

𝑘=1

(( 𝑛
∑

𝑗=1
𝑎2𝑘𝑗

)( 𝑛
∑

𝑗=1
𝑣2𝑗

))

=

( 𝑛
∑

𝑘=1

𝑛
∑

𝑗=1
𝑎2𝑘𝑗

)( 𝑛
∑

𝑗=1
𝑣2𝑗

)

= |𝐴|2|𝑣|2

Taking square roots gives our result. ◭

We use this result in the following lemma, which is a useful lemma about 𝐶1 functions:

Lemma Suppose that 𝐹 ∶ 𝑈 → ℝ𝑚 is 𝐶1 where 𝑈 ⊆ ℝ𝑛 is convex, and suppose that |𝐷𝐹 | is bounded above on 𝑈 , where 𝐷𝐹 is the

Jacobian matrix of 𝐹 and | ⋅ | denotes the Frobenius norm on matrices. Then 𝐹 is Lipschitz on 𝑈 and the Lipschitz constant can be taken

to be any upper bound for |𝐷𝐹 | on 𝑈

PROOF: For each 𝑡 ∈ [0, 1], 𝑡𝑦 + (1 − 𝑡)𝑥 ∈ 𝑈 by convexity. Let 𝑀 be an upper bound for |𝐷𝐹 | on 𝑈 . We have by the fundamental

theorem of calculus and the chain rule

𝐹 (𝑦) − 𝐹 (𝑥) = ∫

1

0

𝑑
𝑑𝑡

𝐹 (𝑡𝑦 + (1 − 𝑡)𝑥)𝑑𝑡 = ∫

1

0
𝐷𝐹 (𝑡𝑦 + (1 − 𝑡)𝑥)(𝑦 − 𝑥)𝑑𝑡

Therefore

|𝐹 (𝑦) − 𝐹 (𝑥)| =
|

|

|

|

|

∫

1

0
𝐷𝐹 (𝑡𝑦 + (1 − 𝑡)𝑥)(𝑦 − 𝑥)𝑑𝑡

|

|

|

|

|

≤ ∫

1

0
|𝐷𝐹 (𝑡𝑦 + (1 − 𝑡)𝑥)||𝑦 − 𝑥|𝑑𝑡 ≤ 𝑀 ∫

1

0
|𝑦 − 𝑥|𝑑𝑡 = 𝑀|𝑦 − 𝑥|

◭

The following results about switching integrals and limits will also be useful.

Lemma Suppose that 𝑎 ∈ ℝ𝑛. Suppose for some 𝑟 > 0, the function

𝑓 ∶ [𝑎, 𝑏] ×𝐷𝑎,𝑟 → ℝ

is defined and continuous, where

𝐷𝑎,𝑟 = {𝑥 ∈ ℝ𝑛 ∶ 0 < |𝑥 − 𝑎| < 𝑟}

Suppose further that the function 𝑔 ∶ [𝑎, 𝑏] → ℝ defined by

𝑔(𝑡) = lim
𝑥→𝑎

𝑓 (𝑡, 𝑥)
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is defined and continuous. Then, for each 𝑡 ∈ [𝑎, 𝑏]

lim
𝑥→𝑎∫

𝑡

𝑎
𝑓 (𝑠, 𝑥)𝑑𝑠 = ∫

𝑡

𝑎
lim
𝑥→𝑎

𝑓 (𝑠, 𝑥)𝑑𝑠

PROOF: First define 𝐹 ∶ [𝑎, 𝑏] × 𝐵𝑟(𝑎) → ℝ by

𝐹 (𝑡, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑓 (𝑡, 𝑥) 𝑥 ≠ 𝑎

𝑔(𝑡) 𝑥 = 𝑎

We will show that 𝐹 is continuous. Suppose (𝑡, 𝑥) ∈ [𝑎, 𝑏] × 𝐵𝑟(𝑎). If 𝑥 ≠ 𝑎, then there is a neighborhood containing (𝑡, 𝑥) such that

any (𝑡′, 𝑥′) inside said neighborhood is such that 𝑥′ ≠ 𝑎. Thus, it is clear that 𝐹 is continuous at (𝑡, 𝑥) by continuity of 𝑓 . Now suppose

𝑥 = 𝑎. Let 𝜀 > 0. By continuity of 𝑔, let 𝛿1 > 0 be such that

|𝑔(𝑡′) − 𝑔(𝑡)| < 𝜀
2

whenever |𝑡 − 𝑡′| < 𝛿1. Let 𝛿2 > 0 be such that

|𝑓 (𝑡′, 𝑥′) − 𝑔(𝑡′)| < 𝜀
2

whenever 0 < |𝑎 − 𝑥′| < 𝛿2. Take 𝛿 = min(𝛿1, 𝛿2). Now suppose that (𝑡′, 𝑥′) ∈ [𝑎, 𝑏] × 𝐵𝑟(𝑎) is such that

|(𝑡′, 𝑥′) − (𝑡, 𝑥)| = |(𝑡′, 𝑥′) − (𝑡, 𝑎)| < 𝛿

Then we must have that |𝑡′ − 𝑡| < 𝛿 and |𝑥 − 𝑎| < 𝛿. If 𝑥′ = 𝑎, we have

|𝐹 (𝑡′, 𝑥′) − 𝐹 (𝑡, 𝑎)| = |𝑔(𝑡′) − 𝑔(𝑡)| < 𝜀
2
< 𝜀

If 𝑥′ ≠ 𝑎 then we have

|𝐹 (𝑡′, 𝑥′) − 𝐹 (𝑡, 𝑎)| = |𝑓 (𝑡′, 𝑥′) − 𝑔(𝑡)| ≤ |𝑓 (𝑡′, 𝑥′) − 𝑔(𝑡′)| + |𝑔(𝑡′) − 𝑔(𝑡)| < 𝜀

Thus, 𝐹 is continuous at (𝑡, 𝑎). Therefore, 𝐹 is continuous. In particular, we see that 𝐹 is continuous on [𝑎, 𝑏] × 𝐵𝑟∕2(𝑎). Since this set

is compact, we see that 𝐹 is uniformly continuous on this set.

Let 𝑡 ∈ [𝑎, 𝑏]. We must show that

lim
𝑥→𝑎∫

𝑡

𝑎
𝑓 (𝑠, 𝑥)𝑑𝑠 = ∫

𝑡

𝑎
𝑔(𝑠)𝑑𝑠

Let 𝜀 > 0. By uniform continuity, choose 𝑟
2 > 𝛿 > 0 such that

|𝐹 (𝑠, 𝑥) − 𝐹 (𝑠′, 𝑥′)| < 𝜀
𝑏 − 𝑎

whenever |(𝑠, 𝑥) − (𝑠′, 𝑥′)| < 𝛿 where (𝑠, 𝑥), (𝑠′, 𝑥′) ∈ [𝑎, 𝑏] × 𝐵𝑟∕2(𝑎). Let 𝑥 be such that 0 < |𝑥 − 𝑎| < 𝛿. Then, for each 𝑠 ∈ [𝑎, 𝑏], we
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see that (𝑠, 𝑥), (𝑠, 𝑎) ∈ [𝑎, 𝑏] × 𝐵𝑟∕2(𝑎) and

0 < |(𝑠, 𝑥) − (𝑠, 𝑎)| = |𝑥 − 𝑎| < 𝛿

Therefore, if 0 < |𝑥 − 𝑎| < 𝛿 we have

|𝑓 (𝑠, 𝑥) − 𝑔(𝑠)| = |𝐹 (𝑠, 𝑥) − 𝐹 (𝑠, 𝑎)| < 𝜀
𝑏 − 𝑎

Thus, we have, if 0 < |𝑥 − 𝑎| < 𝛿

|

|

|

|

|

∫

𝑡

𝑎
𝑓 (𝑠, 𝑥)𝑑𝑠 − ∫

𝑡

𝑎
𝑔(𝑠)𝑑𝑠

|

|

|

|

|

≤ ∫

𝑡

𝑎
|𝑓 (𝑠, 𝑥) − 𝑔(𝑠)|𝑑𝑠 < (𝑡 − 𝑎) 𝜀

𝑏 − 𝑎
≤ 𝜀

as desired. ◭

We obtain the following corollary

Corollary Suppose that 𝑎 ∈ ℝ𝑛. Suppose for some 𝑟 > 0, the function

𝑓 ∶ [𝑎, 𝑏] ×𝐷𝑎,𝑟 → ℝ𝑚

is defined and continuous, where

𝐷𝑎,𝑟 = {𝑥 ∈ ℝ𝑛 ∶ 0 < |𝑥 − 𝑎| < 𝑟}

Suppose further that the function 𝑔 ∶ [𝑎, 𝑏] → ℝ𝑚 defined by

𝑔(𝑡) = lim
𝑥→𝑎

𝑓 (𝑡, 𝑥)

is defined and continuous. Then, for each 𝑡 ∈ [𝑎, 𝑏]

lim
𝑥→𝑎∫

𝑡

𝑎
𝑓 (𝑠, 𝑥)𝑑𝑠 = ∫

𝑡

𝑎
lim
𝑥→𝑎

𝑓 (𝑠, 𝑥)𝑑𝑠

PROOF: This follows by applying the above lemma to the coordinate functions of 𝑓 and 𝑔. ◭

Let 𝜀 > 0 be such that 𝜀 < 1∕6. Define the following sets

𝑋 = {Γ ∈ 𝐶1(𝐵5(0,ℝ𝑛) ×ℝ𝑛,ℝ𝑛) ∶ ||Γ||𝐶1 < 𝜀}

𝑍 = 𝐶1([0, 2], 𝐵5(0,ℝ𝑛))

Note that 𝑋 is an open subset of a locally convex topological vector space. Define

Φ ∶ 𝐵1(0,ℝ𝑛) × 𝐵1(0,ℝ𝑛) ×𝑋 ×𝑍 → 𝑍

Page 17



The Erdos Distinct Distance Problem on Compact Riemannian 2-Manifolds Nathan Skerrett

by

Φ(𝑐, 𝑣,Γ, 𝑦)(𝑡) = 𝑐 + 𝑡𝑣 − ∫

𝑡

0 ∫

𝑠

0
Γ(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

We will first show that the codomain of Φ is well defined. We have that

sup
𝑡
|Φ(𝑦)(𝑡)| = sup

𝑡

|

|

|

|

|

𝑐 + 𝑡𝑣 − ∫

𝑡

0 ∫

𝑠

0
Γ(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′

|

|

|

|

|

≤ sup
𝑡
|𝑐| + sup

𝑡
|𝑡𝑣| + sup

𝑡

|

|

|

|

|

∫

𝑡

0 ∫

𝑠

0
Γ(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

|

|

|

|

|

≤ 1 + 2 + sup
𝑡 ∫

𝑡

0 ∫

𝑠

0
|Γ(𝑦(𝑠′), 𝑦′(𝑠′))|𝑑𝑠′ < 1 + 2 + 𝜀 sup

𝑡 ∫

𝑡

0 ∫

𝑠

0
𝑑𝑠′𝑑𝑠 ≤ 1 + 2 + 4𝜀 < 1 + 2 + 1 = 4

Thus, we see that

|Φ(𝑦)(𝑡)| < 5

and thus the codomain of Φ is well defined.

We note that 𝑍 is a closed subset of a Banach space and is therefore a complete metric space. We would like to show that Φ has a

fixed point in 𝑍 for fixed Γ, 𝑐, and 𝑣. We note that by our above lemma, Γ is Lipschitz with Lipschitz constant less than 𝜀 since 𝐵5(0)×ℝ𝑛

is convex and sup𝑥 |𝐷Γ(𝑥)| < 𝜀 on the domain of Γ by hypothesis. We then have that, if 𝑦1, 𝑦2 ∈ 𝑍

||Φ(𝑦2) − Φ(𝑦2)||𝐶1 = sup
𝑡

|

|

|

|

|

∫

𝑡

0 ∫

𝑠

0
Γ(𝑦1(𝑠′), 𝑦′1(𝑠

′)) − Γ(𝑦2(𝑠′), 𝑦′2(𝑠
′))𝑑𝑠′𝑑𝑠

|

|

|

|

|

+ sup
𝑡

|

|

|

|

|

∫

𝑡

0
Γ(𝑦1(𝑠′), 𝑦′1(𝑠

′)) − Γ(𝑦2(𝑠′), 𝑦′2(𝑠
′))𝑑𝑠′𝑑𝑠

|

|

|

|

|

≤ 6𝜀 sup
𝑡
|𝑦1(𝑠′) − 𝑦2(𝑠′)| + 6𝜀 sup

𝑡
|𝑦′1(𝑠

′) − 𝑦′2(𝑠
′)| = 6𝜀||𝑦2 − 𝑦1||𝐶1 < ||𝑦2 − 𝑦1||𝐶1

Thus, the function

Φ𝑐,𝑣,Γ ∶ 𝑍 → 𝑍

given by

Φ𝑐,𝑣,Γ(𝑦) = Φ(𝑐, 𝑣,Γ, 𝑦)

is a contraction on 𝑍, and therefore has a unique fixed point 𝑦(𝑐, 𝑣,Γ). Let

𝑦 ∶ 𝐵1(0,ℝ𝑛) × 𝐵1(ℝ𝑛) ×𝑋 → 𝑍

denote the function which maps (𝑐, 𝑣,Γ) to the function 𝑦 ∈ 𝑍 such that

𝑦(𝑐, 𝑣,Γ) = Φ(𝑐, 𝑣,Γ, 𝑦(𝑐, 𝑣,Γ))

We will now show smoothness of Φ in its parameters. We have that

Φ𝑐,𝑣,𝑦(Γ + 𝜉Γ̃) − Φ𝑐,𝑣,𝑦(Γ)
𝜉

(𝑡) = −∫

𝑡

0 ∫

𝑠

0
Γ̃(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠
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Thus, the Gateux derivative

𝑑(Φ𝑐,𝑣,𝑦)(Γ, Γ̃)

exists and is the mapping

𝑡 ↦ −∫

𝑡

0 ∫

𝑠

0
Γ̃(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

Let us denote this mapping by 𝜑𝑦(Γ) for fixed 𝑦 (noting that it is independent of 𝑐 and 𝑣, and our original choice of Γ). We will show that

𝜑𝑦 is a continuous function of Γ. We have that

||𝜑𝑦(Γ + Γ̃) − 𝜑𝑦(Γ)||𝐶1 = sup
𝑡

|

|

|

|

|

∫

𝑡

0 ∫

𝑠

0
Γ̃(𝑦(𝑠′), 𝑦′(𝑠′)𝑑𝑠′𝑑𝑠

|

|

|

|

|

+ sup
𝑡

|

|

|

|

|

∫

𝑡

0
Γ̃(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

|

|

|

|

|

≤ 6 sup
𝑡
|Γ̃|

which tends to zero as Γ̃ → 0 in 𝐶1. Therefore, Φ is continuously Gateaux differentiable in Γ. Similarly, we find that the derivatives

𝑑(Φ𝑣,𝑦,Γ)(𝑐, 𝑐) and 𝑑(Φ𝑐,𝑦,Γ)(𝑣, �̃�) are given by the respective mappings

𝑡 ↦ 𝑐

𝑡 ↦ 𝑡�̃�

It is clear that these maps are continuous in 𝑐 and �̃� respectively. We now must compute 𝑑(Φ𝑐,𝑣,Γ)(𝑦, �̃�). We have

lim
𝜉→0

(

Φ(𝑦 + 𝜉�̃�) − Φ(𝑦)
𝜉

)

(𝑡) = lim
𝜉→0

(

−1
𝜉 ∫

𝑡

0 ∫

𝑠

0
Γ(𝑦(𝑠′) + 𝜉�̃�(𝑠′), 𝑦′(𝑠′) + 𝜉�̃�′(𝑠′)) − Γ(𝑦(𝑠′), 𝑦′(𝑠′))𝑑𝑠′𝑑𝑠

)

We note that, for 0 < 𝜉 < 1, the function defined by

Γ(𝑦(𝑠′) + 𝜉�̃�(𝑠′), 𝑦′(𝑠′) + 𝜉�̃�′(𝑠′)) − Γ(𝑦(𝑠′), 𝑦′(𝑠′))
𝜉

is 𝐶1 in both 𝑠′ and 𝜉, and therefore is differentiable and hence continuous. Furthermore, we see that

lim
𝜉→0

Γ(𝑦(𝑠′) + 𝜉�̃�(𝑠′), 𝑦′(𝑠′) + 𝜉�̃�′(𝑠′)) − Γ(𝑦(𝑠′), 𝑦′(𝑠′))
𝜉

= 𝐷Γ(𝑦(𝑠′), 𝑦′(𝑠′)) ⋅ (�̃�(𝑠′), �̃�′(𝑠′))

is a continuous function of 𝑠′. By a double application of an above corollary, we may pull the limit inside the integral. Thus we have that

the derivative 𝑑(Φ𝑐,𝑣,Γ)(𝑦, �̃�) exists and equals the mapping

𝑡 ↦ −∫

𝑡

0 ∫

𝑠

0
𝐷Γ(𝑦(𝑠′), 𝑦′(𝑠′)) ⋅ (�̃�(𝑠′), �̃�′(𝑠′))𝑑𝑠′𝑑𝑠

Moreover, this is continuous by continuity of 𝐷Γ.

We have thus showed that the operator Φ is 𝐶1 in each of its parameters, and is therefore continuously Frechet differentiable (see

proposition A.3 in [1]). From this, we can show using the implicit function theorem that the fixed points of Φ, and the derivative of said

fixed points, are 𝐶1 in 𝑐,Γ, and 𝑣 ≠ 0. We have thus shown that geodesics whose speed is in the unit ball on a Riemannian manifold
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depend in 𝐶1 on the initial point, velocity, and on the Christoffel symbols. Furthermore, we have that, if 𝓁𝑐,𝑣 denotes the line 𝑡 ↦ 𝑐 + 𝑣𝑡,

then

|𝑦𝑐,𝑣,Γ − 𝓁𝑐,𝑣|(𝑡) =
|

|

|

|

|

∫

𝑡

0 ∫

𝑠

0
Γ(𝑦𝑐,𝑣,Γ(𝑠′), 𝑦′𝑐,𝑣,Γ(𝑠

′))𝑑𝑠′𝑑𝑠
|

|

|

|

|

≤ 4𝜀

and similarly

|𝑦′𝑐,𝑣,Γ − 𝓁′
𝑐,𝑣|(𝑡) ≤ 2𝜀

Thus, we see that, for any 𝑐, 𝑣, if ||Γ||𝐶1 < 𝜀 then

||𝑦𝑐,𝑣,Γ − 𝓁𝑐,𝑣||𝐶1 ≤ 6𝜀

In other words, the geodesics 𝑦𝑐,𝑣,Γ can be made uniformly close to the lines 𝓁𝑐,𝑣 in (𝑐, 𝑣) by taking the Christoffel symbols Γ small in

𝐶1.

4 The Erdos Distance Problem on Manifolds

In this section, we will discuss and prove the following result:

Theorem Let (𝑀,𝑔) be a compact connected Riemannian 2-manifold. Then, there exists constants 𝐶𝑀 and 𝑛0 such that, if 𝑃 ⊆ 𝑀 is a

finite subset with 𝑛 = |𝑃 | ≥ 𝑛0, then

|Δ𝑔(𝑃 )| ≥ 𝐶𝑀𝑛1∕2

The proof of this result is quite technical, and thus we will first give an outline of the proof idea before presenting the formal proof.

4.1 Outline of Argument

The main idea behind the proof technique is a perturbation argument that will allow us to transport the arguments used in the plane to

those on manifolds, with technical modifications where needed. We begin by noticing that, using normal coordinates and a pigeonhole

argument, we may choose coordinates such that we work in a ball of radius 1, with a metric of the form

𝑔𝑖𝑗 = 𝛿𝑖𝑗 + 𝜀2(|𝑥|2)

where 𝜀 > 0 is to be determined. We then fix a point in 𝑝 ∈ 𝑃 , and draw geodesic circles at this point to each other point in 𝑃 . If there are

𝑡 circles, we again pigeonhole to obtain a circle with 𝑛∕𝑡 points contained on it. We cut this circle into fourths using standard Euclidean

lines. We then use a perturbation argument to argue that distances increase as we move along this geodesic circle, in the same fashion

that we did in the Euclidean case. The rest of the proof of the Euclidean case follows through as usual, as we have

|Δ𝑔(𝑃 )| ≥ max{𝑡, 𝑛∕𝑡} ≥
√

𝑛

where we have ignored constants in the above inequality.
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4.2 The Perturbation Argument

Let us work on a ball of radius 5 in ℝ2 with metric

𝑔𝑖𝑗 = 𝛿𝑖𝑗 + 𝜀2(|𝑥|2)

Let 𝐸𝑖𝑗 be the error term, and let 𝐶 be a constant such that

|𝐸𝑖𝑗(𝑥)| ≤ 𝐶|𝑥|2

By choosing 𝜀 small enough, our computations in the previous section show that geodesics starting at points in 𝐵1(0) with velocities

|𝑣| ≤ 1 always exist. Furthermore, we will assume that 𝜀 is chosen such that our ball is geodesically convex. Fix a point 𝑎 ∈ 𝐵1∕4(0),

and let 0 < 𝑑 ≤ 1∕2. Then, by taking 𝜀 small enough, our computations from the last section allow us to ensure that the circles of radius

𝑑 about 𝑎 is contained in 𝐵1(0). More precisely, we have

𝐺𝑑 = {𝑞 ∈ 𝐵5(0) ∶ 𝑑𝑔(𝑞, 𝑎) = 𝑑} ⊆ 𝐵1(0)

𝐶𝑑 = {𝑞 ∈ 𝐵5(0) ∶ |𝑎 − 𝑞| = 𝑑} ⊆ 𝐵1(0)

Note that each point on either of these circles can be described as a unit speed geodesic starting at 𝑎. Parameterizing 𝑆1 by 𝜃, we see that

each point on these circles can be smoothly parameterized by 𝜃 ∈ [0, 2𝜋]. As notation, given 𝜑 ∈ [0, 2𝜋], let 𝑐𝜑 denote the corresponding

point on 𝐶𝑑 and 𝑔𝜑 denote the corresponding point on 𝐺𝑑 . Fix 𝜃0 ∈ [0, 2𝜋). Then, by our remarks above, for any 𝜃 ∈ [0, 2𝜋), the unit

speed geodesic 𝛾𝜃 from the point 𝑔𝜃0 to 𝑔𝜃 exists, and can be made close in 𝐶1 to the line

𝓁𝜃 = 𝑡𝑑(cos 𝜃, sin 𝜃) + (1 − 𝑡)𝑑(cos 𝜃0, sin 𝜃0)

Furthermore, both 𝛾𝜃 and 𝓁𝜃 vary smoothly in 𝜃 by our results from last section. Elementary trigonometry shows that on 𝐶1∕2 we have

|𝑐𝜃 − 𝑐𝜃0 | =

√

2
2

√

1 − cos
(

𝜃 − 𝜃0
)

which increases for 𝜃 ∈ [𝜃0, 𝜃0 + 𝜋∕2]. Furthermore, on [𝜃0, 𝜃0 + 𝜋∕2], this function is 𝐶1 (where at 𝜃0 we consider the right-sided

derivative). We would like to show that 𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) increases for 𝜃 in some interval. We have have on [𝜃0, 𝜃0 + 𝜋∕2]

𝑑
𝑑𝜃

𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) =
𝑑
𝑑𝜃 ∫

1

0
𝑔(𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡))

1∕2𝑑𝑡 = ∫

1

0
𝜕𝜃𝑔(𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡))

1∕2𝑑𝑡 = ∫

1

0

1
𝑔(𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡))

1∕2
𝑔(𝜕𝜃𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡))𝑑𝑡

where the second equality is a fancy application of a previous lemma, and we have used symmetry of the connection in the last equality.

Similarly, we have
𝑑
𝑑𝜃

|𝑐𝜃 − 𝑐𝜃0 | = ∫

1

0

1
√

|𝓁′
𝜃(𝑡)|

2
(𝜕𝜃𝓁′

𝜃(𝑡)) ⋅ 𝓁
′
𝜃(𝑡)𝑑𝑡
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We thus have

sup
𝜃

|

|

|

|

𝑑
𝑑𝜃

𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) −
𝑑
𝑑𝜃

|𝑐𝜃 − 𝑐𝜃0 |
|

|

|

|

≤ sup
𝜃 ∫

1

0

|

|

|

|

|

|

|

|

1
𝑔(𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡))

1∕2
𝑔(𝜕𝜃𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡)) −

1
√

|𝓁′
𝜃(𝑡)|

2
(𝜕𝜃𝓁′

𝜃(𝑡)) ⋅ 𝓁
′
𝜃(𝑡)

|

|

|

|

|

|

|

|

𝑑𝑡

Note that 𝜕𝜃𝛾 ′𝜃 → 𝜕𝜃𝓁′
𝜃 and 𝛾 ′𝜃 → 𝓁′

𝜃 as 𝜀 → 0, and this is uniform in 𝑡, and independent of 𝜃, 𝜃0. Thus, given 𝜂 > 0, we may choose 𝜀

small enough such that, for any 𝜃0 we have

sup
𝜃

|

|

|

|

𝑑
𝑑𝜃

𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) −
𝑑
𝑑𝜃

|𝑐𝜃 − 𝑐𝜃0 |
|

|

|

|

≤ sup
𝜃 ∫

1

0

|

|

|

|

|

|

|

|

1
𝑔(𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡))

1∕2
𝑔(𝜕𝜃𝛾 ′𝜃(𝑡), 𝛾

′
𝜃(𝑡)) −

1
√

|𝓁′
𝜃(𝑡)|

2
(𝜕𝜃𝓁′

𝜃(𝑡)) ⋅ 𝓁
′
𝜃(𝑡)

|

|

|

|

|

|

|

|

𝑑𝑡 < 𝜂

When choosing such an 𝜀, it will be assumed that it is chosen such that the above holds with the metric �̃�𝑖𝑗 = 𝛿𝑖𝑗 + 5𝐶𝜀2 (and thus our

choice of 𝜀 will allow our desired inequality to hold for any metric of the form 𝛿𝑖𝑗 + 𝜀2(|𝑥|2) if the constant hidden by the big-O term

is 𝐶). Thus, given 𝜂 > 0, there exists an 𝜀 > 0 such that for any 𝜃0 as above, we have on [𝜃0, 𝜃 + 𝜋∕2] we have

𝑑
𝑑𝜃

𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) =
𝑑
𝑑𝜃

|𝑐𝜃 − 𝑐𝜃0 | + 𝑔(𝜃)

where sup𝜃 |𝑔(𝜃)| < 𝜂. In particular, noting that 𝑑
𝑑𝜃 |𝑐𝜃−𝑐𝜃0 | is continuous and positive on [𝜃0, 𝜃0+𝜋∕2] (and its minimum is independent

of 𝜃0), we may choose 𝜀 as above such that for any 𝜃0 as above, we have

𝑑
𝑑𝜃

𝑑𝑔(𝑔𝜃0 , 𝑔𝜃) > 0

on [𝜃0, 𝜃0 + 𝜋∕2], and thus 𝑑𝑔(𝑔𝜃0 , 𝑔𝜃) increases on this interval. We will now show that given 0 < 𝑑 < 1∕2, our choice of 𝜀 as above

also allows us to guarantee that 𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) increases on 𝐺𝑑 . Consider the mapping 𝜑 ∶ 𝐵5(0) → 𝐵10𝑑(0) given by 𝜑(𝑥) = 2𝑑𝑥. We then

have

(𝜑∗𝑔)𝑖𝑗(𝑥) = 4𝑑2(𝛿𝑖𝑗(𝑥) + 𝜀2𝐸𝑖𝑗(2𝑑𝑥))

where 𝐸𝑖𝑗 is the error term in the big-O for 𝑔. Let ℎ be the metric

ℎ𝑖𝑗(𝑥) = 𝛿𝑖𝑗(𝑥) + 𝜀2𝐸𝑖𝑗(2𝑑𝑥)

since we would have

|𝐸𝑖𝑗(2𝑑𝑥)| ≤ 𝐶|2𝑑𝑥|2 = 4𝑑2𝐶|𝑥|2 < 𝐶|𝑥|2

as 4𝑑2 < 1 (where 𝐶 is the constant such that |𝐸𝑖𝑗(𝑥)| ≤ 𝐶|𝑥|2). Thus, by our above discussion, our choice of 𝜀 will allow for

𝑑𝑔(𝜑−1(𝑔𝜃), 𝜑−1(𝑔𝜃0 ))
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to increase on [𝜃0, 𝜃0 + 𝜋∕2] for any 𝜃0. Since the distances in ℎ are the same as the distances in 𝜑∗𝑔 (and thus the distances in 𝑔 on 𝐺𝑑)

up to scaling, we see that 𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) increases on [𝜃0, 𝜃0 + 𝜋∕2] for any 𝜃0. In other words, we may choose 𝜀 small enough such that

given 0 < 𝑑 ≤ 1∕2, and given 𝜃0, the distances on 𝐺𝑑 increase on [𝜃0, 𝜃0+𝜋∕2]. Note that our above arguments do not depend on where

we chose to center the circles since we can make geodesics 𝐶1 close to lines uniformly in point and velocity, and thus our choice of 𝜀

will work for any geodesic circle of radius at most 1∕2 centered in 𝐵1∕4(0). In other words, we have shown that we may choose 𝜀 > 0

such that, given 𝑎 ∈ 𝐵1∕4(0), 0 < 𝑑 ≤ 1∕2, and 𝜃0, the function 𝑑𝑔(𝑔𝜃 , 𝑔𝜃0 ) increases for 𝜃 ∈ [𝜃0, 𝜃0 + 𝜋∕2]. This will form the basis of

our perturbation argument.

4.3 Formal Proof

We finally have built up the machinery to prove our desired result.

Theorem Let (𝑀,𝑔) be a compact connected Riemannian 2-manifold. Then, there exists constants 𝐶𝑀 and 𝑛0 such that, if 𝑃 ⊆ 𝑀 is a

finite subset with 𝑛 = |𝑃 | ≥ 𝑛0, then

|Δ𝑔(𝑃 )| ≥ 𝐶𝑀𝑛1∕2

PROOF: Let 𝑃 ⊆ 𝑀 be finite with |𝑃 | = 𝑛. Let 𝐶 = inf𝑀 𝑐𝑜𝑛𝑣. Then, at each point, the normal ball of radius 𝐶 has metric

𝑔𝑖𝑗 = 𝛿𝑖𝑗 + (|�̃�|2)

Let 𝑁𝑝 denote the supremum of the error term given by the big-O term (this will be finite since the 𝑔𝑖𝑗 are smooth and 𝑀 is compact).

Then 𝑁𝑝 will be a continuous function of 𝑝. By compactness, let 𝑁 = sup𝑝∈𝑀 𝑁𝑝. Choose 𝜂 > 0 such that:

1): For each 𝑝 ∈ 𝑀 , exp𝑝 ∶ 𝐵𝜂(0) ⊆ 𝑇𝑝𝑀 → 𝑀 is a diffeomorphism onto an open subset of 𝑀 containing 𝑝, and the open subset

geodesically convex, which we will do by taking 𝜂 ≤ 𝐶 . Call this open subset 𝑉𝑝.

2): The metric on 𝐵5(0) ⊆ ℝ2 given in the usual coordinates by

𝑔𝑖𝑗 = 𝛿𝑖𝑗 +
𝜂2

5
𝑁

is well defined, and such that geodesics with origin in 𝐵1(0) with velocities |𝑣| ≤ 1 exist in this ball. Furthermore, choose 𝜂 such that if

𝑞 ∈ 𝐵1∕4(0), and 𝑞𝜃0 is on the geodesic circle of radius at most 1∕2 centered at 𝑞, the function 𝑑𝑔(𝑞𝜃 , 𝑞𝜃0 ) is increasing on [𝜃0, 𝜃0 + 𝜋∕2].

Note that 𝜂 is independent of 𝑃 . Let 𝜀 = 𝜂∕20. For 𝑝 ∈ 𝑀 , let 𝑈𝑝 be the diffeomorphic image of exp𝑝 ∶ 𝐵𝜀(0) ⊆ 𝑇𝑝𝑀 → 𝑀 . Note

that 𝑈𝑝 ⊆ 𝑉𝑝. Consider the covering of 𝑀 by 𝑈𝑝. By compactness, take 𝑘 ∈ ℤ+ to be the minimum number of 𝑈𝑝 required to cover 𝑀 .

Note that 𝑘 depends only on 𝜂, which is independent of 𝑃 . By the pigeonhole principle, there must be some 𝑞 ∈ 𝑀 such that

|𝑃 ∩ 𝑈𝑞| ≥
𝑛
𝑘

Let 𝑚 = 𝑛∕𝑘. Consider such 𝑞, and pass to the normal coordinates on 𝑉𝑞 . Let 𝑃𝑞 = 𝑃 ∩ 𝑈𝑞 . We now may work on a ball of radius 𝜂
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centered at 0 in ℝ2, with metric

𝑔𝑖𝑗 = 𝛿𝑖𝑗 + (|�̃�|2)

Note that 𝑃𝑞 can be considered as contained in 𝐵𝜀(0) ⊆ 𝐵𝜂(0). Define 𝜑 ∶ 𝐵5(0) → 𝐵𝜂(0) to be the homothety

𝜑(𝑥) =
𝜂
5
𝑥

Consider metric 𝜑∗𝑔 on 𝐵5(0), which has component functions

(𝜑∗𝑔)𝑖𝑗(𝑥) = 𝜑∗𝑔(𝜕∕𝜕𝑥𝑖, 𝜕∕𝜕𝑥𝑗) = 𝜂2𝑔(𝜕∕𝜕�̃�𝑖, 𝜕∕𝜕�̃�𝑗) = 𝜂2𝑔𝑖𝑗(�̃�) =
𝜂2

25
𝑔𝑖𝑗

(𝜂
5
𝑥
)

Thus, we see that

(𝜑∗𝑔)𝑖𝑗 =
𝜂2

25

(

𝛿𝑖𝑗 +
𝜂2

25
(|𝑥|2)

)

Let ℎ = 25
𝜂2 (𝜑

∗𝑔). Then

ℎ𝑖𝑗 = 𝛿𝑖𝑗 +
𝜂2

25
(|𝑥|2)

where the maximum of the error term given by the big-O is less than or equal to 5𝑁 (and thus the properties described in 2) also apply to

ℎ). Since ℎ is just a rescaling of 𝜑∗𝑔, the distances in ℎ will be the same as the distances in 𝜑∗𝑔, which will be the same as the distances

in 𝑔 since 𝜑 is a diffeomorphism. Having normalized our coordinates, we see that 𝑃𝑞 = 𝜑−1(𝑃𝑞) is now contained in a ball of radius 1∕4

at zero. Fix 𝑝0 ∈ 𝑃𝑞 . Let

𝑡 = |{𝑑𝑔(𝑝0, 𝑝) ∶ 𝑝 ∈ 𝑃𝑞}|

Then 𝑃0 has at least 𝑡 distinct distances. Draw geodesic circles centered at 𝑝0, passing through the other points of 𝑃0. Note that the radii

of the circles is at most 1∕2. Then there must be a circle that contains at most (𝑚 − 1)∕𝑡 points of 𝑃𝑞 . Let 𝜃 ∈ [0, 2𝜋] parameterize this

circle, and split this circle into [0, 𝜋∕2], [𝜋∕2, 𝜋], [𝜋, 3𝜋∕2], and [3𝜋∕2, 2𝜋]. Then at least one of these intervals must contain (𝑚−1)∕4𝑡

points of 𝑃𝑞 . Without loss of generality Let 𝜃0 ∈ [0, 𝜋∕2] be such such that the corresponding point on the geodesic circle, 𝑞𝜃0 , is in 𝑃𝑞 ,

and there is no smaller 𝜃 ∈ [0, 𝜋∕2] with this property. By choice of 𝜂, we see that the function 𝑑𝑔(𝑞𝜃0 , 𝑞𝜃) is increasing on [𝜃0, 𝜋∕2],

and thus there are (𝑚 − 1)∕4𝑡 distinct distances on this circle. We thus see that

|Δ𝑔(𝑃 )| ≥ |Δℎ(𝑃𝑞)| ≥ max(𝑡, 𝑚 − 1∕4𝑡) ≥
√

𝑚 − 1
4

=

√

𝑛
𝑘 − 1

4
≥ 𝐶𝑘

√

𝑛

for some 𝐶𝑘 (at least when 𝑛 is large). Since 𝑘 depends only on 𝑀 , we see that

|Δ𝑔(𝑃 )| ≥ 𝐶𝑀
√

𝑛

for some constant 𝐶𝑀 depending only on 𝑀 , as desired. ◭

Note that, nowhere in the above proof did we use the classical result in the plane. Indeed, one could actually apply our result to
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prove the original result in the plane by considering the surface of a smoothed out cylinder (say of radius 2) and normalizing the set

of points such that they are contained in the open disk of radius 1. The constants obtained from this process will depend highly on the

specific details of the cylinder one chooses, and these constants are likely much worse than the constants from the usual proof in the

plane. However, we still technically have the original Erdos bound as a corollary:

Corollary (Classical Erdos Bound) There exists constants 𝐶, 𝑛0 > 0 such that, if 𝑃 ⊆ ℝ2 is finite with |𝑃 | ≥ 𝑛0, then

|Δ(𝑃 )| ≥ 𝐶
√

|𝑃 |

5 Further Work

5.1 Additional Proof of the 𝑛1∕2 Case

As mentioned briefly above, several proofs of the planar 𝑛1∕2 bound are known. In particular, [3] gives the following quick argument.

pick two points 𝑝1, 𝑝2 ∈ 𝑃 , and draw the circles centered at 𝑝1 passing through the other 𝑛− 2 points in 𝑃 . Do the same for 𝑝2. Suppose

there are 𝑘1 circles centered at 𝑝1 and 𝑘2 circles at 𝑘2. At worst, we have at most 2𝑘1𝑘2 intersections. Therefore, since each of the 𝑛 − 2

other points of 𝑃 are contained on such an intersection, we have

𝑛 − 2 ≤ 2𝑠𝑡

Thus
√

𝑛 − 2
2

≤ 𝑠 ≤ |Δ(𝑃 )|

which gives the result. It is reasonable to expect that a similar method of proof can be adapted to the Riemannian setting by studying the

intersection properties of geodesic circles in normal coordinates. This could be a fun topic of further exploration.

5.2 𝑛2∕3 Case and Higher Dimensions

Having obtained the 𝑛1∕2 case, the next natural step is to try and replicate the 𝑛2∕3 argument on manifolds. It is likely that much of the

analysis setup in this paper will assist in this, however it is likely that a more robust analysis is needed. In particular, if one examines

Moser’s construction (see [3] or [8]), one sees the main sticking point will be transferring the annuli argument to the manifold setting, as

one has to delete the annuli such that distances do not repeat.

One could also study this problem for Riemannian manifolds of higher dimension, possibly proving a bound similar to the one

discussed at the beginning of this paper.

5.3 Upper Bounds

In this paper we have neglected to construct examples. In particular, we have not attempted to try and find upper bounds similar to the

𝑛∕
√

log 𝑛 upper bound in the plane. Constructing examples (both on specific manifolds and in general) to analyze upper bounds for
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minimal distances is an important topic of further analysis.

5.4 Applications to Spectral Sets on Manifolds

As a possible application of the principal result in this paper, one could try and prove a result in line with [5]. In this section we briefly

discuss the approach given by [6] to make sense of this problem on manifolds. For this section, (𝑀,𝑔) is a compact Riemannian manifold,

and 𝜇 is the measure on the Borel 𝜎-algebra of 𝑀 obtained by

𝜇(𝐷) = ∫𝐷
𝑑𝑉𝑔 = ∫𝑀

𝜒𝐷𝑑𝑉𝑔

We also let Δ𝑔 be the Laplace-Beltrami operator given by

Δ𝑔𝑓 = −div(grad𝑓 )

for 𝑓 ∈ 𝐶∞(𝑀). The natural analogue of spectral sets in this setting is the study of what sets 𝐷 ⊆ 𝑀 are such that 𝐿2(𝐷) has an

orthogonal basis of eigenfunctions of the Laplace-Beltrami operator (in this setting, such sets are called spectral). One could also study

less restrictive properties, such as whether or not 𝐿2(𝐷) admits a frame of eigenfunctions of Δ𝑔 (see [6] for a discussion on frames). The

authors of [6] prove the following analogue of Fuglede’s theorem in this setting:

Theorem Let (𝑀,𝑔) be a compact Riemannian manifold, and 𝐷 ⊆ 𝑀 be a set of positive measure which tiles 𝑀 under a subgroup 𝐺

of the isomoetries of 𝑀 . Then 𝐷 is spectral

Given the connections between spectral sets in ℝ2 and the Erdos distance problem, especially the result in [5] described in the

beginning of this paper, it is natural to wonder if one could obtain analogues on manifolds in the two dimensional case. To do this, it is

likely we would need a better bound than the result in this paper. If we would like to consider the higher dimensional case for spectral

sets, we of course would need a bound for higher dimensions.
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