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Introduction

Random walks are a fundamental topic in probability theory with wide-ranging
applications across physics, engineering, mathematics, and computer science. In
fact, there are over 11,000 papers on arXiv that explore them in depth. Random
walks can be used to model a variety of real-world phenomena, including fluid
dynamics, stock price movements, genetic drift, animal foraging behavior, and
search algorithms.

But what exactly is a random walk? At its core, it’s a simple model of an
indecisive traveler. To understand how such a versatile model works, let’s look
at its simplest form. Imagine standing at 0 on a number line. You flip a fair
coin: if it lands heads, you take a step to the right; if tails, a step to the left.
For instance, let’s say you flip the coin and get heads—you move to position 1.
That’s the first step in your random walk.

The Starting Point First Step

and if we get tails after that...

Second Step
The Starting Point First Step

A lot of research goes into modeling where we would end up after n steps and
with what probability. This process can also be generalized to higher dimensions
(moving on a grid or in a 3d space instead of just the number line where we
move in each direction with the same probability) and those processes have their
own interesting properties. For the purpose of this paper, our random walks
will occur on graphs.



A graph is a mathematical structure made up of nodes, called vertices, and
the connections between them, called edges. This can be conceived as a system
of towns and the roads that connect them. Consider now a random walk on a
graph. At each step, the choice of direction depends only on the current position
and the available edges, not on the path taken to get there. Whether the edges
are directed or undirected, weighted or unweighted, the behavior of the random
walk changes accordingly, revealing insights into the structure and dynamics of
the graph itself. Through this lens, a graph becomes not just a static diagram,
but a playground of movement, chance, and connectivity.

Motivation and Problem Statement

The central focus of this honors thesis is the hitting time, which refers to the
number of steps required for a random walk to move from one vertex to another.
In probabilistic terms, for a graph G = (V, E), we define the hitting time as

Ti,j = ll’lf{t | XO = i,Xt Zj}

where X; denotes the position of the random walker at time ¢, and ¢ and j are
two distinct vertices in the graph.

Studying hitting times in Markov chains is essential because they provide
deep insights into the behavior and dynamics of stochastic processes over time.
Specifically, a hitting time represents the expected number of steps it takes for
a Markov chain to reach a particular state for the first time, starting from a
given initial state. This concept is crucial across a variety of fields. In network
theory, it helps us understand the expected time it takes for a random walk
to reach a specific node. In reliability engineering, it can model the time until
a system fails or recovers. In algorithm design, hitting times are important
for evaluating the efficiency of randomized algorithms, while in economics and
biology, they offer tools for modeling transitions between key states or events.
By studying hitting times, we gain a clearer understanding of the temporal
aspects of randomness, enabling us to predict, optimize, and control complex
systems governed by uncertainty. Any system that can be modeled by a random
walk benefits from the investigation of hitting times.

One effective way to explore hitting times is through simulation. For exam-
ple, consider the cycle graph with 10 nodes. The following diagram shows the
graph:



.

Suppose we are interested in the random variable 79 5, representing the num-
ber of steps needed to go from node 0 to node 5. After running 10,000 trials,
we obtain the following frequency graph:

Distribution of Hitting times on 21 node Cycle
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What stands out here is the large variance in the distribution. The sample
mean is 25.0306, and the sample variance is 410, indicating that the variance is
relatively large compared to the mean.

We can observe a similar behavior in the hypercube graph with 8 nodes,
which is shown below:

Now, suppose we are interested in 7(9,0,0,(1,1,1), the number of steps needed
to move from node (0,0,0) to node (1,1,1). After running 10,000 trials, we
obtain the following frequency graph:



Distribution of Hitting times on 3 dimension hypercube
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The sample mean in this case is 10, and the sample variance is 63.

This observation leads to the central motivation for this thesis. In the lit-
erature, the primary focus in the study of hitting times has been on expected
hitting times, denoted E[r; ;. However, as demonstrated above, the expected
value alone is often a poor predictor of how the random walk behaves. In this
paper, we will examine two related quantities: P(7; ; = n), the probability mass
function of hitting times, and Var(7; ;), the variance of the hitting time. Despite
their importance, these quantities receive less attention due to computational
challenges. Our approach will involve general computations, with a subsequent
focus on vertex-transitive graphs.
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Markov Chains on General Graphs

Many of the ideas from the next section comes from [4] and [5]

Distributions

Let’s try to find the distribution of P(7; ; = n) on our graph G with Markov
matrix A. One relationship becomes clear.

P(rij=n)= ZP(Ti,k =1)P(1,,; =n—1)
k#j

The above formula calculates the probability of reaching an adjacent node to
our ending node in n — 1 steps and then making a step from that adjacent node
to the end. By setting k& # j, we make sure that we aren’t adding the probability
that we arrive to ending node j one move early. The above is true, as each step
of a random walk is independent. Let us fix an ending node j, and then let us
define a vector

P(Tl,j = n)

P(r3,; = n)

Pn = .

P(T‘V|717j = n)



the nodes 1,2...|V| — 1 represent some arbitrary numbering of the nodes of the
graph once j is removed. Let @ be the matrix such that Q;, = P(7i, = 1) such
that i, k # j. We then have

Pn = QPn—l

as the recursion above is simply matrix multiplication. So then by induction,
we have

Pn :Qn_lpl

One might notice that @ is simply the Markov matrix of our graph but with
removed jth row and jth column. Therefore, here we have a solid way of cal-
culating distributions. As we are taking arbitrary powers of a matrix, it often
comes down to diagonalizing ). This is often hard to do by hand, but a com-
puter can help. There are a couple things to note about the eigenvalues of such
a matrix.

1. @ is a substochastic matrix as the sum of every row is less than or equal
to 1. This implies that |A\| < 1. Where X is an eigenvalue of 1.

2. @ is the adjacency graph of a subgraph of G. Which implies by the
Interlacing theorem of Spectral Graph Theory that all the eigenvalues of
Q@ are embedded between the eigenvalues of A.

Consider this graph

. We will use every step on a random walk is independent and assuming that
walking across any edge is equally likely. Setting j = 0 and then @ is
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. Then
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Q" Py = |P(no=n)| = T o
' 3x(V/1341)"2n3n
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We can see that even for relatively simple looking graphs, the distributions
can be very complicated and often intractable to compute by hand with larger
graphs. Later, we will restrict the graphs we will work with to make sure this
process is simpler.

Characteristic Function
Let’s consider the value of the ¢, (t). We can compute this directly using
standard techniques

o0

br,(t) = B[] = Y~ €™ P(r;; =n)

n=—oo

As it is impossible to move to another node in negative moves. Also since i # j,
it follows that n # 0. Therefore, we can write the sum as

oo
Z €ZntP(TZ',j = n)
n=1

o0
Z einteranlpl
1
n=1
Instead of just considering just one moment generating function, we consider
all the characteristic functions ¢, ,(t) for all 7 # j. We will call this vector
function M, | (t).

d)T*J (t) Z ei"thflPl
n=1

¢T*‘j (t) — ¢t Z einthpl

n=0
br, (1) = (I —€"Q)"' Py
We can take the derivative of this
¢r () =ie"(I—e"Q) ' Pr+ e (I —e" Q) hie" QI — " Q) ' Py
¢r () =i (I —e"Q) (I +e"Q — e"Q) ") Py

QS:—*J (t) — ieit(l _ 6itQ)71((I _ eitQ + eitQ)(I _ €itQ)71)P1



¢y, ,(t) =ie" (I —e"Q) Py

Since i E[r, ;] = -, ,(0)

¢, ,(0) =i(I- Q)P
Therefore, we have

Elr.;l=I-Q) 7P

We have another way of reaching this quantity by considering the quantity
agian. _
¢T*,j (t) = eltpl

(I—€"Q)¢r. ,(t) =€e"Py
We take the derivative of both sides
(I —e*Q)p). (1) —ie"Qor, (1) = ie" Py

ity A _ it it
(I —e"Q)g, (1) =ie" Py +ie" Qo (1)
We now plug in t = 0.

(I - Q)¢ ,(0) =1iP1 +iQsr, ,(0)

Since ¢, ,(0) = > 0", € P(7;; = n) = 1. If 1 is the vector of all 1’s, then we
have that
(I-Q)¢%, ,(0)=1iPr+Q1

¢r.,(0) =il = Q)7 (P + Q1)
It follows that Q1; = -, ,; P(7;x = 1). Therefore, (P + Q1) =1

¢, (0) =il - Q)1

So then .
Elr.;]=(I-Q)'1=> Q"1

n=0

We then have that second derivative of this is

o7 (1) =—2Q(I -Q)~*1

T,

‘Which means that
E[r2;] =201 -Q)*1

E[r2;]=2> nQ"1
n=0

When it comes to actually computing these quantities. The above calculations
exist for approximate values found by a computer. In some cases, it is feasible
to use the above formulae to find the distributions for general classes of graphs.
The cases below are generally easier to compute. Later in this paper, we will
introduce machinery to tackle harder cases.



Complete Case

The complete graph is where each node is connected to every other node. It
looks like this. In this case, it is clear that for a complete graph of k& nodes, we

have 1
(T 3] ) k _ 1

if we have a simple random walk. Then, it is clear that for all vertices 7,j in

the graph
E—2\""" 1
P(”’J’_")_<k1> k-1

Where the walker makes n—1 ”wrong” moves and then makes the right one once.

We can see above that the distribution is geometric with success probability of

1
=1 SO

E[Ti’j] = k‘ -1
Var[r ;] = (k—1)(k —2)

Complete Bipartite Case

A complete bipartite graph consists of two disjoint sets of nodes, A and B, of
sizes k1 and ks, respectively. Every node in A is connected to every node in B,
and there are no edges within A or within B.

Suppose a random walker starts at a node in A and aims to reach a node in
B. Due to the bipartite structure, the walker alternates between A and B on
each step. That is, all paths from A to B (and vice versa) have odd lengths,
while paths from A to A (or B to B) have even lengths.

Let i € A and j € B. The probability that the walker moves directly to

node j in one step is
1

ko’
since the walker chooses uniformly among the ko neighbors in B.

If the walker does not reach j on the first attempt, it returns to some node
in A, then tries again, and so on. Each failed attempt consists of two steps:
A — B — A, and succeeds with probability 1/ks on the next A — B step.
Thus, the number of such trials until success follows a geometric distribution
with success probability 1/kq, but each trial takes 2 steps after the first.

Therefore, for n > 1:

P(r;=1) =

n—1
1 1
P(Ti’jZQ’I’L—l): 1—— —, fOTiGA,jEB.
ko ko

This is a geometric distribution over odd steps.
Hence, the expected hitting time is:

o] 1 n—1 1
Elrijl=>» (2n—1)- (1 - kQ) " ko — 1.

n=1



For i,j € A with ¢ # j, the walker must first move to B, and then to j in A,
which takes at least two steps. This again produces a geometric-like distribution
(over even steps), with the same success probability:

1\ "' 1
}P’(Tm:Qn): 1—— -, for i,jEA, ’L;éj
ko )

Hence,
[es} 1 n—1 1
Elr,; ;] = m-[(1= = - — = 2k,
=Yoo (1) =

For the variance, note that if X is a geometric random variable with success
probability p = 1712’ then:

Var(X) = =ko(ka—1)
The hitting time from A to B is 7; ; = 2X — 1, so:

Elr; ;] =2E[X] —1=2ks — 1, Var(r ;) =4Var(X) = 4ka(ka — 1).
Similarly, for 4,5 € A, 7, ; = 2X, so:

Elrij] = 2k, Var(ri;) = 4ka(kz — 1).

Thus, both cases have the same variance. The only difference lies in the
offset of 1 step in expectation between cross-set and within-set hitting times.

Cycle Case

Let’s perform these computations for a cycle. It clearly follows for a k-cycle
(denoted as Cy)

ri
0 % 0 0 0 0 2
1o 1 9 0 0 0
: O : - 0 0
1 1
2 L2
So then we have
0 2 0 o0 0 0 r
1 2 1 P(TI,O:n_l) P(Tl,OZn)
5 0 5 0 0 0 P(rao=n-1) P(r20=n)
o 3 o 1% 0 0 ’ = ’
0 0 O 0 % 0 P(Tp—10=n—1) L P(Th—1,0 = n)



Or in other words

0o L 0 0 o o]""
10 Lo 0 0
0o 1 0 1 0 0
00 0 0 10

P(Tl7 = 1)
P(7s, 1)
P(Tk;{,’o =1)

(e — 1)

So it follows we want to take the diagonalization of the Toeplitz Matrix above.
Let us call that matrix H and its diagonlization LDL~'. Thankfully, the eigen-
vectors and eigenvalues for tridiagonal toeplitz matrices are well known and
with that we have the following as the diagonalization. These eigenvalues were

found in [1]

0 2 0 0 0 0
10 % 0 0 0
0o + 0 1 0 0
00 0 0 .. 2 0
sin(%) sin(5F) sin(“7U7) 1 eos(%) 0 0
2 | sin(2F) sin(4T) sin (2T 0 cos(2E) 0 0
sin((k_l)”) sin(z(kzl)”) sm((k ;)2”) 0 0 0 cos((]C kl)”)
sin(%) sin(27) sin((kf)”)
sin(%’r) sin(%) sin(2(k;1)”)
Sin( (k—kl)Tr) Sin(2(k;1)ﬂ') SiIl( (k—l)ZTr)
As we know from earlier,
P(TI,O = 1) %
P(r2 )| |0
P(Tk—l,O = 1) %
So, then we first multiply by L~! or the last matrix in the diagonalization.
sin(T) sin(2x) sin(=07) ] 1L sm()+$m“;”)
sm(%:) sin(47) sin(@) 0 1| sin(2F)+ sm(w)
Sin((k D) (2l sin(E=Dmy | |5 sin(E=D7T) 4 gin(E=Dr)
We next multiply by the diagonal matrix.
cos(%) 0 0 nl sin?Q—’T) cos(Z)sin(L)" 1 + sm(%))
110 cos(F) 0 0 oF 21 cos(20)" 1 sin(21) 4 sin(2E1T)
? (k=D)m sin(4F) ? k=1 k—1 k—1)>
T s T cos(B0 ) sin(07) 4 6=




And lastly multiplying by L.

sin(7) sin(%) sin(;kk—kll)‘rr) COS(%)SiD(%)n_l +Sin(%))
g Sin(%ﬂ) sin(‘%) sin(%) 1 303(2%)71718111(2%)—{—3111(%)
sin(5%) - sin(20527) sin( & k)%) cos(E=DT )1 (sin (1 )+sm((k72)2ﬂ))
A o) ) s 22 s )
% =0 008(%)" 1(sm(%)+sin({(k 1)”))5111(;7“)
=\ % §=0 cos(5)" (sin(4F) + sin(£557)) sin(24F)
L5474 cos(4)" (sin(4F) + sin(LE71)) sin( =)
Therefore
k—1 ) . ' N
o1 I -1/ (JT y M g
P(rij=n) = L ;C%( L ) (sin( 2 ) + sin( i )) sin( 2 )

We will discuss the expectation and variance of this distribution later.

Path Graphs

As we explored above, one important class of graphs where hitting time dis-
tributions can be derived explicitly is the cycle. Consider the path graph Py,

which is a chain of k£ nodes connected in sequence.

For generality, we take one of the endpoints as the absorbing state (i.e., the

destination node).

This assumption does not result in a loss of generality. Suppose instead
we selected an interior node (e.g., node 3 in a 5-node path) as the destination.
Then, any walk from one end (e.g., node 1) that eventually reaches the other end
(e.g., node 5) without hitting the interior node is irrelevant to the hitting time
to that interior node. Thus, conditioning on reaching the interior node without
escape effectively partitions the walk into two disjoint path subgraphs. Hence,
the analysis of hitting times to an endpoint captures the general behavior.

11



Now consider the cycle graph Csi, where nodes are connected in a closed
loop of 2k vertices. By folding the cycle along the line of symmetry, we can pair
nodes that are equidistant from a chosen target node. (The line of symmetry
would be a hypothetical line from 0 to 6.

Under this pairing, the probability of stepping toward or away from the target
remains unchanged, and the resulting random walk is statistically identical (in
terms of hitting time) to that of a path graph with & nodes. Therefore, the
hitting time distribution for a path of k£ nodes corresponds exactly to that of a
cycle of 2k nodes under this symmetry.

Cayley Graphs

Let’s suppose we have a random walk on a group G. We can imagine each
element in our group g € G being associated with a node in a graph. Let’s
suppose that two nodes g, h are connected if for some ¢ € C' C G, gc = h. We
often call C' the connection set. The resultant graph is called a Cayley graph.
Many times we want to consider a graph connected only by its generators. This
changes for different kinds of graphs. If we want to perform a random walk on
such a graph, we assign a probability from moving from g — gc. Let us call this
p(c). Generally, C is symmetric. This means that if z € C then 27! € C. If
p(r) = p(x~1), then we have a symmetric random walk.

In the context of Cayley graphs, the cycle graph on k nodes can be seen as
the Cayley graph of the cyclic group Zj with generating set {+1}. Extending
this idea, we now consider the group ZZ%, where p is an odd prime. A standard
set of generators for its Cayley graph is:

{(£1,0), (0, £1)},

which gives rise to the 2D torus graph — a grid with wrap-around edges.
However, an alternative set of generators is:

{(£1,£1)},

which corresponds to diagonal steps in the lattice. These generators also produce
a valid Cayley graph, albeit with a rotated geometry. However, why would

12



we do this? This shift let’s us consider random walks that are independent
in both coordinates, something that is not true if we are moving along the
standard generators of Zg. This happens as the probability of moving vertically
is inevitably tied to the probability of moving to the side as a walker must
pick one or the other. By considering a diagonal random walk, with the above
generators, we introduce independence in the walks in either of the coordinates.
Importantly, these generator sets are related via a linear automorphism:

boa—b

which is an automorphism of ZIQ, since 2 is invertible in Z,, (as p is odd). This
transformation maps the standard coordinate basis to the new one spanned by
the diagonal generators.

Let ¢, (i) denote the probability that a walk on a p-cycle starting at 0 hits
i for the first time at step n. If we define ¢~'(a — c,b — d) = (a’,V’), then
(a’,b") represents the displacement between (a,b) and (¢, d) expressed in terms
of the diagonal generator basis. Under the assumption of independence in each
coordinate (which holds due to the structure of the walk), the hitting time
distribution on Zf, can be expressed as:

P(T(ap) ey =n) = Y _ci(a) - cni(V)).
1=0

That is, the distribution of the hitting time is a convolution of the 1D hitting
time distributions along the transformed coordinates. The reason that Zf, was
singled out instead of the direct products of other cyclic groups is that the ¢ is
an automorphism on Zg and not in other such groups. However, if one was to
draw those graphs generated by these diagonal generators, the above framework
would easily be able to find the distribution for those graphs as well.

Fourier View

For the second part of this paper, we will consider random walks on groups.
To analyze these walks effectively, we need to introduce some algebraic machin-
ery—specifically, the Fourier transform on groups.

Let G be a finite group, and let f : G — C be a complex-valued function on
G. The Fourier transform of f at a representation p of G is defined by

Flo)=>_ f9)nlg),

geG

where p: G = GL(V) 2 M,,x»(C) is a (complex) representation of the group.
That is, p(g) assigns a matrix to each group element g € G in a way that
respects the group operation: p(g192) = p(g1)p(g2). These matrices often act
on a complex vector space V', and their action reflects the structure of the group.

13



A key concept in this context is that of an irreducible representation. A
representation p is called irreducible if there is no nontrivial subspace W C V'
(i.e., W # {0} and W # V) such that p(g)(w) € W for all g € G and w € W.
Intuitively, this means the representation cannot be decomposed into simpler,
smaller representations—it is a “building block” for all representations of G. If
the above was true, then we could just consider p(g) as transforming just W
instead of all of V. A very important irreducible representation is where p(g) = 1
for all ¢ € G. This is called the trivial representation and is denoted as p; in
this paper as the first of the irreducible representations of a group. Irreducible
representations play a crucial role in Fourier analysis on groups, much like sines
and cosines do in classical Fourier analysis on the real line. [3]

An important result in representation theory is that Abelian Groups have 1
dimensional irreducible representations. This is a fact we will use soon. It is also
worth mentioning that Abelian groups have as many irreducible representations
as they have elements. [3]

We also must introduce the inverse Fourier transform. Let R be the set of
irreducible representations of G.

f(g) |G| Zd Trace(p(g~) f(p))

PER

Where d,, is the dimension of the transformation or the number of the rows of
the matrices that p maps the elements of g to. On abelian groups, this looks

like
flo)=15 Z plg™")f(p
el foy
as d, = 1.
One other theorem that is often useful is Plancehrel’s theorem which is stated
as.

> flaga™) Zd Trace(f(p)g(p))
e

aeG PER

With abelian groups, we have

_ 1 RPN
> fla)g(a™) = @l > F(p)g(p)
acG
It is also important to note that for a non-trivial representation (p # p1). This

is proven in [6]
> plg) =0
geG

The most important reason we introduce this machinery into this paper is the
fact that Fourier Transform turns convolutions into products. If for all a € G.

a) =" fla)glas™

seG

14
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h(p) = f(p)g(p)

Expected Values

For each successive time step, we have that for x,y € G. p*(z,y) is the prob-
ability of moving from x to y. For random walks on groups, we are assuming
a time-independent increment distribution. Therefore, we can define a new
function p(g) = p*(z, zg9) = P(Tp,z9 = 1).

For this portion of the paper, we are concerned with the distribution of 7, .
on finite abelian groups G.

Much of the ideas of the particular section are from the paper [6]. Before,
we approach talking about distributions. We will use Fourier analysis on groups
to analyze these functions. Let us begin with functions for expected value of
random walks on abelian. Suppose h(g) = E[r. 4] where e is the identity of the
group.

We have the following recursion relation.

Elreq] = ZP(S)E[TE,QS‘l +1]
seG

Which is expressed as

h(g) =1+ p(s)h(gs™)

seG

It also follows that
h(e) =0

Let 7,7 = {t > 1|Xo = e, X; = e} be the first return time. It is a well known
result that E[rf] = %(6) where Pj(e) is the stable probability of being at
the e node or the ergodic probability. Since we are fixing our walk such that
P(tgn=1) = P(74,9,.n = 1) = p(g~'h) for all g; € G, it follows that all nodes
have the same stable probability. Therefore, Ps(e) = ﬁ For ease, we will say
that |G| = b, so we have that We are given that E[7)7] = b. Thus, h(g) satisfies
the relation
h(g) =k(g) + Y p(s)h(gs™"),

seG

1 if e,
k(g) = .g#
1-b ifg=e.

where

The adjustment at g = e ensures that h(e) = 0; without subtracting n, h(e)
would otherwise be equal to b. We will take the fourier transform of k£ here.

E(ps) =" k(g)ps(g)

geG

15



E(pj) = pjlg) —0I

geG
Since }_ g pi(g) =0 for j # 1.

k(pj) = —bI
So then we have for j # 1
h(p;) = =bI + h(p;)B(p;)
h(p;) — hp;)Blp;) = —bI
h(p;)(I — B(p;)) = —bI
h(p;) = =b(I = B(p;)) "

We note that by Fourier Inversion and the fact that abelian groups have as
many irreducible representations as

j=1
b
h(g) = 2; : _;(pj)pg(g‘l)
1< b



b

1—pig™")

h(g) =) —L—=
jz:; 1 —p(py)

This gives us a formula of first hitting time from e to g in terms of the irreducible

representations of G. Do remember that the above formula applies to only

Abelian groups.

Variance

Let q(g) = E[r2 ] denote the second moment of the first-passage time from the
identity element e to a group element g € G.
To derive a recurrence for ¢(g), we condition on the first step of the random

walk:
9(9) =D _ () El(Teger + 1))
seG

Expanding the square inside the expectation:

alg) = D_ p(s) (EIr2 yus] + 2Bl g, 1] 1)

seG
Using q(gs™!) = Elr; ;1] and h(gs™') = E[re gs-1], we obtain:
a(g) = p(s)algs™) +2)  p(s)h(gs™") + 1.
seG seG

We also have the boundary condition:

q(e) =0.

To proceed with Fourier analysis, define the adjustment function:

1 if e,
k(g)={ . o7
1—¢* ifg=e,

where ¢* = E[r"?] is the second moment of the return time to e. Unlike the
expectation, this quantity depends on the specific structure of the group and
transition probabilities.

This allows us to rewrite the recurrence:

a(9) = > p(s)algs™) +2)_ p(s)h(gs™") + k(g)-

seG seG
Taking Fourier transforms:
a(p;) = plps)alp;) + 2p(p;)h(p;) + k(pj)-

As in the expectation case, we have:

~

k(pj) = —q¢"1.

17



Rearranging the terms:
QeI = Blpy)) = ~20(p)h(py) — 4"1.
Substituting the earlier expression for ﬁ(pj) = —b(I — p(p;))~*, we obtain:
a(ps) = (2b(1 = Dpy)) " Blps) — " 1) (I = Blps)) -
We will compute using a similar with the inverse as above

0=4l0) = g7 L)

PER
0=">Y qlp)
PER

As we focus on abelian groups, we have as many abelian groups as elements of

our groups
b

ZZ]\K’J

Jj=2

Now, taking the inverse Fourier transform
b
Z ?]\ pj pj

Plugging in and taking into account that abelian representations are 1 dimen-
sional

@M—l

DL~ 2Blp)  q O\ L[ 2plp) ¢
q(g)‘bz(<1ﬁ<pj>>2 (1z7(pj))) bz((lﬁ(pj)P <1ﬁ<pj>>>’”(9 )

Jj=2

18



Distributions

For the ease of writing, we will define that P(7, . =n) = m,(g). It follows that
p(g) = m1(g) It follows that we have

ma(g) =Y p*(g,95 )mn_1(gs™")
seG

and
mp(e) =0

for n > 1. So, we can design a new function ¢,

For the purposes of this write-up, we will assume that our random walk is
symmetric.

mn(g) = —cn(g) + > ma(s)mn_1(gs™")

seG
Ma(py) = =1 mu1(s)p(s) + Plp;)Mn—1(p;)
seG
() = =1 mu1(s)ma(s™") + mi(p;)Mn_1(p;)
seG

By Plancharel’s Theorem on Abelian Groups and the fact that Abelain groups
have exactly the same number of irreducible representations and group elements.

k—1

Tnpg) =~ 3 T (a7 (pu) + 73 )73 ()
a=0

and so then we have that

k—1

Tnpg) =~ 3 T (a7 (pu) + 73 )73 (5)
a=0

So then we have a recurrence relation such that.

mn—1(p0) mn(po)
A Mp—1(p1) — mn(p1)
Mp—1(Pk—1) My (Pr—1)

19



Where

%nﬁ(po) k—%lrﬁl(m) _%”ﬁ\l(pk—l)

A~ | —rmlpo)  Fmalen) —zmi(pe—1)

*%ﬂ/ﬁ(ﬂo) *%ﬁl\l(ﬁ’l) %ﬁl\l(pk—l)

A—|"F F % 0 plp) 0
e 0 0 ... plpk-1)

Which means that we have that
An_lﬁl\l — TTL;L

I haven’t made any assumptions so far except for symmetric random walks and
abelian groups. The above matrix is similar to @) so it has the same eigenval-
ues. Taking the powers of the above matrix is faster and it is generally easier
to compute the eigenvalues of such a matrix. For large matrices, the above’s
eigenvalues and eigenvectors will faster to compute due to the fact that it is a
diagonal matrix multiplied by a nilpotent matrix.

Spectral Methods

Before we introduce the last part of this paper, we must discuss some basic
lemmas. The first is that G is d-regular, then A\ or the largest eigenvalue is
equal to d. It’s also true that |A,| < d as well.

Another lemma is that Trace(A") counts the number of closed k length closed
walks in the graph.

%
Z ¥ = Trace(A)
i=1

The next part of the paper will also only work on Vertex-Transitive
Graphs. Vertex Transitive Graphs are graphs where there exists a graph au-
tomorphism ¢ such that ¢(i) = j for any vertices i and j. In simple terms, it
means the graph looks the same from every vertex. It also means that each node
has the same amount of closed walks length k that start and end at that node.

Trace(A")
v

This quantity is where V' is the number of vertices in the graph. [2]

Loop Counting

Let M, , = P(1;; = n). It is clear that any vertex transitive graph that we
have.
My=1
and
1 1 Trace(A) 7

M, = - Al
1= d Vv

20



This makes sure that a vertex can’t visit itself in one move. We also have

1 Trace(A) 1 Trace(A?)
M,y = L g2 LTracetd) Traer )y
27 d v e v ’

This has it so we can’t visit our selves in 2 moves or 1 move. Generalizing this

1 " 1 Trace(A¥)
M, = d—nA” yla #Mn_k
k=1
Basically this says, we are not allowed to visit the node earlier than n moves and
then make a loop to that same node to achieve a walk of technically technically
n moves from i to j. We get this sum.

1 Trace(AF)
- M, 7An
kv T

As this is a Cauchy product, we get the following

" Tmce ZM m_ Z - A"

dn
=0
By definition of trace we have.
1 00 tk \% o] 00 o
k n __ n
V(zdszi)zMw S
n=0 =0 n=0 n=0
1 o0 oo n
n __ n
ZZ& ) 2 Mt =) A
=0 n=0 n=0 n=0
1 14
— M,t" = (I - fA)
vl DD
v <z=0 1- d> n=0
so for |t| < 1
[e%e) t _
S - VUi
n v
n=0 22:0 1_1’\7it
d
o dCtjy,;(I*%A)
T n }/:1(1*5&')
- M,t"e; =
n;el “ o iy (=50
HY:l(l_éki)

i Vdetjﬂ'(l — %A)
Tw = =
n=1 Z;/:l Hi;ﬁj(]‘ - é)‘i)

This is a very general result for all vertex transitive graphs. Which apply to all

Cayley graphs as well.
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Small Values of M,,

To get an idea of how the values of M,, relate to A, we can see how they are
related.

My=1
11 T
1 5 Tr(A) Tr(A?) — VTr(A)
My = > (A - A+ 7 T
1 s Te(4) Tr(A)? — VTr(A?)
M; = B (A - A+ 72 A
Tr(A)2 — 2VTr(A%)Tr(A) + V2Tr(A43)
1y Ti(A) s Tr(A)? — VTr(4?%) ,
My = 7 (A - A° 4 2 A
Tr(A)? — 2V Tr(A%)Tr(A) + V2Tr(A3)A
_ 73
N Tr(A)* — 3VTr(A%)Tr(A)? + V2(2Tr(A%) Tr(A) + Tr(A?)?) — V3Tr(A%)

V4

After My, it becomes very hard to write the full sum on one page. There does
seem to be a pattern where M, = JAM,_1 — f(A)I where f(A) is made up of
partitions of n expressed by the trace split up by how many ways there are to
sum to that number. Future work would prove this exactly.

Sample Distributions

Using Mathematica, we can code up the series

> n V det 'J(I — LA)
Z P(rij=n)t" = ——— d p
n=1 Zj:l Hz;aé](l - E)\l)

to get series that describe our distributons.

e 3d Hypercube Walk from i = (0,0,0) — j = (1,1,1)

> 213 145 987 68617  4802t!! f
P R th = — [0) t13
nz;; (7ij =n) o T 31 T 720 T 6561 T 50040 (t7)

e Walk in S5 from ¢ = e to j = (1, 3)

n _ Y - o 9
t _3+27+27+243+729+2187+6561 +O(t)

> t 483 2t 2065 4446 1167 2808
> P(ri;=n)
n=0

22
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e Walk in Dg from i = e to j = (14)(23)

i P ) t 4 N 28t° N 196t7 N 1372t° N 9604¢1!
= L
7 3727 ' 243 ' 2187 19683 177147

+0 (1)

n=0

It is important to note that the generators of S3 in this example are
the transpositions and that generators of Dg are (14)(23) and (1234) and
(12)(34). As above, we walk along our generators with equal probability.

Continuous-Time Random Walks

We consider a continuous-time random walk on a finite state space, where tran-
sitions between states occur according to a Poisson process with rate A = 1. Let
M be the markov matrix defining this walk. Let j be the defined as the end
point. Let @ be the substochastic matrix of M with the jth row and column
removed. Let P; again be the vector with the 1 step probabilities.

Define 7 ; as the vector random variable representing the first hitting times
to node j from every other node. We are interested in computing the cumulative
distribution function (CDF) of 7¢ ., that is,

*,79

P(ri; <t).

In continuous time, the probability that the walk makes exactly n transitions
by time ¢ is given by the Poisson distribution:
tret

P(makes n steps) = —
n!

Therefore, the probability that the walk hits node j within time ¢ can be
written as

o0
tn —t
P(ri,; <t)= Z ; - P(hits j in at most n steps).
n=0 ’

The second term in the sum can be written as
n
Z Q" 'p,
k=1

Hence,
(oo} n

P(T,ﬁj < t) _ Z tre—t ZQkflpl'

n!
k=1

n=0

We can interchange the order of summation:

e _ 0 t’neft
Pri; <=3 Q'R — .
=1 n=k

n:
k
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Recognizing that this is the tail of the Poisson distribution, we move to a
matrix formulation. Using the identity

o0 —t
3 t"L'Qn _ e t-Q),
0 n.

we obtain a closed-form expression:
P, <t)=(I-Q)" (I - e*“’*@) Py fort >0

Differentiating this expression with respect to ¢, we obtain the vector prob-
ability density function (PDF):
d : —t(I-
fre () = ZP(rE; <t) =e =@ p,
We can interpet this as smoothed out version of our orginial walk. This can make
the moments easier to obtain as the above distribution has the same moments
as our discrete time random walk.
o0

/ te =P = (I-Q) P =) nQ"'P

0 n=0

0

oo )
/ t267t(17Q)P1 — 2([_@)*3])1 — Zn2Qn71P1
n=0

And so on.

Future Work

There is a lot future work in this field. Finding ¢* values for abelian groups
would help variance calculations become tractable. It would also be an advance
in the field for general graphs as second or higher moments of return times are
not generally well studied.

To obtain distributions from M, we need to extract coefficients using residue
integrals. This calculation will be in the eventual our paper written on our
findings.

Another direction one could take is by calculating how much information
one would need to have about the M,, matrices to get the adjacency matrix of
the graph. It is clear that recovering the matrix from the distribution of one
pair of vertices is not sufficient (consider cycle and path graphs). This begs the
question of how many distributions are needed. Since we have that A* are in
the Bose-Mesner Algebra by the following recursion explored earlier,

= 1 Trace( A¥)

dk v
k=0

1
Mn_k == di’rLAn

we can retrieve A from M,,. Then, therefore there exists some proportion of M,
that is needed before extracting A.
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