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Abstract. We study the use of random walks as an efficient estimator
of global properties of large undirected graphs, for example the number
of edges, vertices, triangles, and generally, the number of small fixed
subgraphs. We consider two methods based on first returns of random
walks: the cycle formula of regenerative processes and weighted random
walks with edge weights defined by the property under investigation. We
review the theoretical foundations for these methods, and indicate how
they can be adapted for the general non-intrusive investigation of large
online networks.
The expected value and variance of first return time of a random walk
decrease with increasing vertex weight, so for a given time budget, re-
turns to high weight vertices should give the best property estimates. We
present theoretical and experimental results on the rate of convergence
of the estimates as a function of the number of returns of a random walk
to a given start vertex. We made experiments to estimate the number of
vertices, edges and triangles, for two test graphs.

1 Introduction

Recent developments in technology have allowed the creation of large networks,
available globally via personal computers, or more recently mobile phones. The
original and most outstanding examples of such networks are the www, and
the email network. Relatively recently, many On-Line Social Networks (olsn)
such as Twitter and Facebook, or online video repositories such as YouTube have
sprung up. The size, structure, and rate of growth of these networks is a question
of natural interest. As they are so large and our ability to access to them is often
limited by the provider, we need methods to investigate them which are fast
relative to the network size, are non-intrusive, and have low storage overheads.

We investigate how effective random walk based sampling methods are for
estimating structural properties of a connected undirected graph (a model of
a large network), such as the number of vertices, edges and small subgraphs.
We collect together existing theoretical facts which are useful in designing a
random walk based methods, and evaluate the performance of these methods
experimentally. The final application is practical, but we are guided by theory
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as far as possible. The methods we consider are based on randomized crawling
by downloading pages from the network under investigation. Our assumption is
that the network cannot be explored systematically by BFS, either because of
size or because the number of third party accesses to the network is restricted.

Let G = (V,E) be a connected (undirected) graph with |V | = n vertices and
|E| = m edges. The expected first return time T+

u of a random walk to a vertex u
is given by ET+

u = 1/πu, where πu is the stationary probability of vertex u. For
a simple random walk, ET+

u = 2m/d(u), where d(u) is the degree of u. If d(u)
is large, then ET+

u is small and we can quickly obtain an estimate for m. For
example, a graph generated by preferential attachment has m = cn edges, and
vertices u with degree as large as d(u) =

√
n. We can use a walk starting from

such a vertex to estimate m in 2m/d(u) = O(
√
n) expected steps.

An important idea is that for graphs in which there is variation in degree
sequence, it is possible to use a simple random walk to quickly and accurately
estimate the number of edges based on first returns to high degree vertices. If
the graph is near regular, ET+

u = Θ(n), for any start vertex u This is bad if we
want a quick answer. Such graphs may still exhibit variations in local structure
which we can exploit. For example the number of triangles at a vertex may vary
considerably. If so we could use a random walk with vertex weight proportional
to the number of triangles at the vertex. By starting from a high weight vertex we
should be able to exploit this structural variation to count properties efficiently.

We discuss the following ideas, both theoretically and experimentally.

1. Global properties of graphs can be estimated using first return times of
random walks. The general theory is given in Section 3 with respect to the
cycle formula of regenerative processes and weighted random walks. For a
given property, these approaches either keep a running total of the number
of structures (e.g. triangles) observed by each excursion of the walk (the
cycle-formula method), or use first return times of walks with edge weights
proportional to the number of structures containing the edge (the weight-
random-walk method).

2. The use of the cycle formula of regenerative processes is discussed in Section
3.1. The use of weighted random walks is developed in Section 3.2 with
respect to various examples such as the number of triangles, vertices and
arbitrary fixed subgraphs.

3. The quality of the methods depends on the distribution of first return times
to the start vertex. We review the theory relating to this in Section 3.3.
Vertices with high degree (or more generally, with high vertex weight) have
smaller expected value and (upper bound on) variance of return time, and
should estimate properties more effectively. This is also discussed in Sec-
tion 3.3.

4. Experimentally, as the walk proceeds, it naturally discovers high weight ver-
tices, and the estimates based on returns to these vertices are efficient after
a reasonable number of steps. The performance of random walks on suitable
test graphs is assessed in Section 4.

5. The expected value and variance of the first return time T+
v of a random

walk to a given vertex v are known quantities, given by ET+
v = 1/πv and



3

Var T+
v = (2Zvv +πv−1)/π2

v respectively, where Zvv =
∑
t≥0(Pv(v, t)−πv)

and Pv(v, t) is the probability that a walk starting from v returns to v at step
t. It is difficult to evaluate Zvv directly, but we can bound Zvv, and hence the
variance of our estimates, using the eigenvalue gap of the transition matrix.
The variance of our estimates can also be estimated directly from the return
time data using a result of [5]. See Section 3.3 for details.

The aims of the paper are to collect together available information on ran-
dom walk based methods for estimating network properties and to compare and
develop the techniques. Our original contributions are in the design of weighted
random walks to estimate e.g. number of vertices, triangles and fixed motifs,
and to detect clustering (see Section 3.2). We also provide theoretical and ex-
perimental methods to bound and estimate the variance of the first return time
T+
v to the start vertex v (3.13); see methods M1, M2 in Section 3.3.

The complexity measures we use to present our results are somewhat crude,
as the processing load per walk step varies both locally and on the remote site for
the different walks we use. Our basic measures are the number of steps, and the
number of returns to the start vertex. By choosing a high weight start vertex the
expected first return time can be made sublinear (see 3, 4 above). The variance
of this quantity can also be bounded as outlined above.

2 Network sampling methods based on random walks

The simplest way to study a network is to inspect it completely using e.g. breadth
first search. Failing this, a simple statistical method of sampling vertices uni-
formly at random (u.a.r) can be considered. In practice for large networks such
as the www or olsn’s, neither of these methods is feasible, but the network
can still be queried by some limited form of crawling or interaction with the
network through its API. Our assumption is that query results are held locally
on a single processor. The selection of the next vertex to visit (query) is based
on a random walk runs on the query data. The random walk is used as a ran-
domized algorithm to determine the next step in the query process. We measure
the computational complexity as the number of steps made by the walk, and
our aim is to obtain results in a number of steps sub-linear in the network size,
which is assumed unknown.

Methods to estimate network properties based on random walks can be di-
vided into two classes: estimates obtained by using a random walk as a surrogate
for uniform sampling (an outline of this is given next), and estimates based on
first return times of random walks (this is discussed in detail in Section 3).

Sampling the elements of a set uniformly at random with replacement can
be used to estimate the set size in sub-linear time by the method of sample and
collide. The use of this method to estimate network size is described by Bawa et
al. [3]. If we sample uniformly at random with replacement from a population
of size n, then, by the Birthday Paradox the expected number of trials required
for the first repetition is

√
2n. In general, the expected number of repetitions in

s samples is s(s− 1)/2n with variance (1− 1/n) s(s− 1)/2n. If R is the sample
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size when the first repetition occurs, then an estimate of the network size is
n = R2/2.

The method of sample and collide requires u.a.r. samples from the population.
To obtain a uniform sample from a network using a random walk, we can do the
following. Run the walk for t ≥ T steps before sampling, where T is a suitable
mixing time. In this case the walk is in near-stationarity and Pu(Xt = x) ∼ πx,
whereXt is the position of the walk at step t, and πx is the stationary distribution
of the walk. For a simple random walk πx = d(x)/2m, where d(x) is degree of x,
and m is the number of edges. Thus, unless the graph is regular, the sample is
not uniform. To use a sample from the stationary distribution, we need to unbias
the walk. There are several ways to do this. One method is to use the approach
of Massoulie et al. [12], and Ganesh et al. [7], who use a continuous time random
walk, random waiting time at a vertex x which is negative exponential with
mean 1/d(x), and a fixed stopping time T . In this way, the obtained stationary
distribution is uniform. The discrete equivalent (re-weighted random walk) is to
walk for a fixed number of steps T , sample the vertex, and retain the sample with
probability 1/d(x). This gives a uniform sampling probability of 1/2m. Another
method is to use a Metropolis-Hastings random walk with target stationary
distribution πx = 1/n. One way to do this, is to use a transition probability
1/M where M ≥ ∆(G), the maximum degree of G. See [13] page 264 for more
details.

An alternative approach to uniform sampling is developed by Katzir et al [8].
A simple random walk is used in conjunction with the birthday paradox, and
the statistical bias arising from the non-uniform stationary distribution is ap-
proximately corrected.

3 Estimates based on first return time of a random walk

For a random walk starting at vertex v, the first return time to v is defined as

T+
v = min{t > 0 : Xt = v},

where Xt is the position of the walk at step t (X0 = v). If the walk is ergodic, it
has a well defined stationary distribution πv at any vertex v, and the expected
value of the first return time ET+

v is given by ET+
v = 1/πv.

We describe two methods to estimate properties of networks based on first
return times of random walks. The methods are in no sense mutually exclu-
sive, and can indeed be used together. The first method, the cycle formula of
regenerative processes, has typically been used with simple random walks (e.g.
[12]). The second method uses first return times of weighted random walks. Both
methods are equally viable to estimate a given property.

An important point for either method, is that high weight vertices perform
well as start vertices for random walk property estimators. For a simple random
walk, the weight of vertex u is the vertex degree d(u), and this feeds into the first
return time ET+

u = 2m/d(u). Thus in regular graphs, all vertices are equivalent
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start points. By re-weighting the walk we can artificially create high weight
vertices suitable for estimating a given property.

To give an example of this, consider a regular graph which contains many
triangles (copies of K3), distributed in non-uniform clusters. In a simple random
walk, as vertex weight is proportional to degree, this graph has no high weight
vertices. By weighting edges proportional to the number of triangles they are
contained in, vertices with many triangles assume a high weight. First returns
to these vertices can provide a good estimator for the total number of triangles.

For an (ergodic) weighted random walk, the expected value of the first return
time is equal to the reciprocal of the stationary probability, as in the case of the
simple un-weighted walk:

ET+
v =

1

πv
, (3.1)

but the stationary probability now is πv = w(v)/wG, where w(v) is the weight
of vertex v and wG is the total weight of the graph.

3.1 Estimates based on the cycle formula of regenerative processes

The cycle formula of regenerative processes can be summarized as follows. Con-
sider a random walk starting from vertex u and let f(Xt) be a vertex valued
function. Then

Eu

T+
u −1∑
t=0

f(Xt)

 = ET+
u

∑
v∈V

πvf(v). (3.2)

This identity is a consequence of the result (see e.g. [1] Chapter 2, Lemma 6)
that

Eu(number of visits to v before time T+
u ) =

πv
πu

= ET+
u πv.

Identity (3.2) was used by Massoulié et al [12] to count network size using a
simple random walk. Putting f(v) = 1/d(v) removes the degree bias from πv so
that

∑
v∈V πvf(v) = n/2m, and the RHS of (3.2) equals n/d(u).

Following [12] we maintain the convention f(v) = φ(v)/w(v) when general-
izing to weighted random walks, with πv = w(v)/wG. Denote by Ru the random

variable
∑T+

u −1
t=0 f(Xt), with expectation ERu given by (3.2). Let φ =

∑
v∈V φ(v)

be the quantity which we want to estimate. Then, as ET+
u = 1/πu,

ERu = ET+
u ×

∑
v∈V

πv
φv
w(v)

=
φ

w(u)
. (3.3)

An important point experimentally, is that φ obtained from (3.3) does not de-
pend on the total weight wG, but only on w(u) (a known quantity).
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3.2 Estimates based on return times of weighted random walks

This technique generalizes the following observation. For a simple random walk,
the stationary distribution of vertex u is πu = d(u)/2m = 1/ET+

u . Thus the first
return time T+

u can be used to estimate the number of edges m of a graph. Let

Z(k) =
∑k
i=1 Zi be the time of the k-th return to vertex u. The random variable

m̂ =
Z(k)d(u)

2k
(3.4)

estimates the total number of edges m.
The basic idea is to design the stationary distribution to reveal the required

network property. To do this we fix the edge weights for the walk transitions
at any vertex in such a way that the required answer is contained in the graph
weight wG. The total weight wG can be obtained from the stationary distribution
πv = w(v)/wG of the start vertex v, which by (3.1) is the reciprocal of the
expected return time. The larger w(v), the smaller EvT

+
v , giving us more rapidly

k samples for (3.4).
The remainder of this section is arranged as follows. Firstly, we summarize

the properties of weighted random walks. Secondly we give examples of using
weighted random walks to estimate the total number of triangles t in the network,
(a litmus test for social networks), and to estimate the size n of the network.
Thirdly, we explain the general framework for estimating the number of small
fixed subgraphs (‘motifs’ like triangles, cliques, cycles, etc.), and for detecting
clustering within a given set of vertices S.

Weighted random walks. Given a graph G = (V,E) and a positive weight
function w(u, v) on edges {u, v} ∈ E, we can define a Markov chain with state
space S = V and a transition matrix with elements:

puv =

{
w(u,v)
w(u) , if {u, v} ∈ E,

0, otherwise,

where w(u) =
∑
{u,v}∈E w(u, v) is the weight of a vertex u, and wG =∑

u∈V w(u) = 2
∑
{u,v}∈E w(u, v), is the weight of the graph G. See [1] for de-

tails.
We refer to this chain as a weighted random walk on G. The stationary

distribution is:

πu =
w(u)

wG
. (3.5)

A special, but important case of a weighted random walk is the simple random
walk, where w(u, v) = 1 for all {u, v} ∈ E. For this case:

puv =

{ 1
d(u) , {u, v} ∈ E
0, otherwise

πu =
d(u)

2|E|
.
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Estimating the number of triangles. For each edge e we assign the weight
1 + t(e), where t(e) is the number of triangles containing e. Let t(v) be the
number of triangles containing v and t(G) the total number of triangles in G.
Then

πu =
w(u)

wG
=
d(u) + 2t(u)

2m+ 6t(G)
.

Let Z(k) =
∑k
i=1 Zi be the time of the k-th return to vertex u. We estimate the

number of triangles t(G) by

t̂ = max

{
0,
Z(k)(d(u) + 2t(u))

6k
− m

3

}
, (3.6)

where m can be estimated by Equation (3.4).

Estimating the network size. We use now inversely degree biassed weighted
random walks, setting the edge weight w(u, v) = 1

d(u) + 1
d(v) . It can be shown

that wG = 2n, so the stationary distribution is:

πu =
w(u)

wG
=

1 +
∑
v∈N(u)

1
d(v)

2n
. (3.7)

Let Z(k) =
∑k
i=1 Zi be the time of the k-th return to vertex u, as before, and

let w(u) be as shown in Equation (3.7). We use the following estimator for the
number of vertices:

n̂ =
Z(k)w(u)

2k
. (3.8)

Estimating the number of occurrences of an arbitrary fixed subgraph.
Using a weighted random walk to estimate the number of edges m(G) or triangles
t(G) in a graph G are special cases of the following problem. Let S be a set of
unlabeled graphs. For each M ∈ S we want to count the number of distinct
labeled copies of M in the graph G. The cases edges and triangles given above
correspond to S = {K2} and S = {K2,K3} respectively. For each e ∈ E(G) we
put w(e) =

∑
M∈S N(M, e), where N(M, e) is the number of distinct subgraphs

H isomorphic to M which contain e. The simplest case (after S = {K2}) is S =
{K2,M}, where M can be any connected subgraph, e.g. Kk, Kk,`, a chordless
cycle of length 4, or some specific (small) tree. In this case we have the following:

wG = 2
∑
e

w(e) = 2
∑
e

(1 +N(M, e)) = 2m+ 2νµ(G), (3.9)

where ν = |E(M)| and µ(G) is the number of distinct copies of M in G. As
πv = w(v)/wG, and w(v) and ν are known, we can use the method of first
returns to estimate µ(G).

As an experimental heuristic we can use weighted walks with edge weight

w(e) = 1 + cN(M, e). (3.10)
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We have c = 1 in (3.9), but any value of c > 0 is valid. The parameter c can be
chosen smaller than 1 (e.g. c = 1/10) in order to stop large values of N(M, e)
distorting the eigenvalue gap, and hence mixing rate of the walk. We adopted
this approach with some success for counting triangles in the Google web graph
(see Section 4).

Detecting edges within a given set S. This is intended as an experimental
measure of evidence for clustering. Let S ⊆ V be given. We use the following
edge weights, where c > 0 constant. For edge e = {u, v}, let w(e) = 1, if neither
vertex is in S, let w(e) = 1 + c if exactly one vertex is in S and let w(e) = 1 + 2c
if both vertices are in S. It follows that wG = 2m + 2cd(S), where d(S) is the
degree of S.

3.3 Distributional properties of first return times

As stated earlier, the expected value of the first return time T+
v to a vertex v is

ET+
v = 1/πv; see e.g. [1]. The variance of T+

v is given by

Var T+
v =

2EπTv + 1

πv
− 1

π2
v

. (3.11)

Here EπTv is the expected hitting time of v from stationarity, i.e.:

EπTv =
∑
u∈V

πuEuTv,

where EuTv is the expected time to hit v starting from u. The quantity EπTv
can be expressed as EπTv = Zvv/πv where

Zvv =
∑
t≥0

(Pv(v, t)− πv), (3.12)

and Pv(v, t) is the probability that a walk starting from v returns to v at step t.
Thus

Var T+
v =

2Zvv + πv − 1

π2
v

. (3.13)

For rapidly mixing random walks (e.g. walks on expander graphs) Zvv is con-
stant C. Indeed it can be bounded by 1 ≤ Zvv ≤ 1/(1 − λ2) where 1 − λ2
is the eigenvalue gap of the transition matrix (see below for a proof of this).
As πv = w(v)/wG, both the expected first return time 1/πv and the variance
∼ (2C − 1)/π2

v of first return time decrease with increasing vertex weight w(v).
This implies that returns to high weight vertices should make the best estimators
for wG, and that they will return sample values more often and more reliably.

The quantity EπTv can be bounded in various ways, to give estimates of Zvv
and Var T+

v . We give two methods: (M1) an estimate based on eigenvalue gap,
and (M2) a direct estimate from the return time data. One standard deviation
of the sample mean for estimates of the number of edges was derived by these
methods. This is illustrated in Figure 1 (top part): the outer dashed curve is
obtained using method (M1) and the inner dashed curve using method (M2).
The graph used in those experiments is described in Section 4.
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M1. From (3.12) we have

Zvv =
∑
t≥0

(Pv(v, t)− πv) ≤
∑
t≥0

|Pv(v, t)− πv|

Using the result that |Pv(v, t)− πv| ≤ λt2 (see e.g. [11]), gives

Zvv ≤
1

1− λ2
. (3.14)

M2. We estimate Zvv directly from the first return time data. Let T be a mixing
time of a random walk on a graph G. The method described in [5] states (subject
to certain technical conditions) that for t > T the probability ρ(t) that a first
return to v has not occurred by t is of the form

ρ(t) ∼ exp
(
−t/EπT

+
v

)
.

Replacing 1−ρ(t) by the proportion y(t) of returns at or before step t, estimates

Zvv. For the plot in Figure 1 (top part), an estimate of Ẑvv = 1.6 was obtained.

4 Evaluation of random walk based methods

Figures 1-3 show the convergence of our experiments as a function of the number
of returns k to the start vertex of the walk. The test networks included here are
a triangle closing preferential attachment graph, and a sample from the www
(the Google Web Sample).

The figures are presented as follows. The horizontal axis is k – the number of
returns to the start vertex. The vertical axis is the estimate of the property. The
data points plotted are based on 10 independent experiments. The underlying
data points appear close to each other because there can be several returns within
a short period, followed by a long wait for the next return. In all plots, the thick
line “Experiments Average” is our estimate – the sample mean as a function
of 10k (the k-th return in 10 experiments); the two dotted lines “Experiments
Deviation” show one standard deviation of the sample mean; and the horizontal
line through the middle of the plot area shows the true value of the property.
For the estimates based on first return times of weighted random walks, we plot
also the standard deviation of the sample mean estimated using method M2
(the dashed curves “Zvv Deviation”). Finally, for the estimates of the number of
edges, we also computed an upper bound on the standard deviation using method
M1. This bound is shown in Figure 1 (top part) by the two outer dashed curves
“Bound on Deviation,” but is outside of the visible area in the plot in Figure 2.

Hybrid triangle closing model. We use a hybrid triangle closing model
which generates graphs as follows. At each step we add a new vertex v with r
edges to the existing graph. To add a vertex v, we first attach to an existing vertex
x chosen preferentially. The remaining r − 1 edges from v are added as follows.
With probability p we attach to a vertex chosen by preferential attachment, and
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with probability 1−p we add an edge from v to a random neighbour of vertex x.
Using this approach we are able to control the number of triangles generated
while maintaining the power-law degree distribution to be asymptotic to 3.

We generated a graph using this model with n = 600, 000,m ∼ 1.8 ∗ 106 and
p = 0.6. At each step r = 3 edges were added. The total number of triangles was
550,499. The graph has a power law coefficient of 2.9. The second eigenvalue of
the transition matrix (simple random walk) is 0.88265, making the eigenvalue
gap 0.1733.

Figure 1 shows the convergence of the edge m̂, vertex n̂ and triangle t̂ es-
timates computed using the weighted random walk method described in Sec-
tion 3.2. The random walks started at a vertex u of degree d(u) = 61824, and
belonging to t(u) = 70045 triangles. The weights of this vertex are: wSRW (u) =
d(u) = 61824, for the simple random walk used to estimate the number of edges;
wTRW (u) = d(u) + 2t(u) = 201914, for the weighted random walk used to esti-
mate the number of triangles; and wV RW (u) = 15201, for the weighted random
walk used to estimate the number of vertices. The expected first return times to
vertex u are 58, 34 and 79, respectively.

All 10 experiments gave reasonable estimates of all three parameters after
roughly 100 to 1000 returns to the start vertex, that is after at most n/10 sam-
ples (visits to a vertex). Figure 1, top part, shows good rate of convergence
of the edge estimate m̂, and a good match between the standard deviation of
the experimental data (the dotted ”Experiments Deviation” lines) and the stan-
dard deviation obtained by estimating the parameter Zvv (the “Zvv Deviation”
curves). The estimates using the cycle formula as described in Section 3.1 were
similar, so we omit the details.

Google Web Sample. We used a sample from the Google web graph which
was released for the purposes of the Google programming contest in 2002 [10].
This data set consists of 855,802 vertices, 5,066,842 edges and 31,356,298 tri-
angles. The second eigenvalue of the transition matrix (simple random walk) is
0.99970, making the eigenvalue gap 3 × 10−4. For this network the estimates
converged slower than in the generated test graphs, with much more variation
around the expected values. The structure of the graph is very inhomogeneous;
presumably this is why the data set is made available.

In our experiments random walks started at a vertex u of degree d(u) = 6353,
with t(u) = 53371 triangles. For the simple random walk, which is used for
estimating the number of edges, the expected first return time to the start vertex
u is equal to 1595. The computed estimates for the number of edges are given in
Figure 2 (top). The convergence is slow and the theoretical standard deviation
bound is outside the figure. We have to wait for about 1000 returns to the start
vertex to get a reasonable estimate, which means that the number of samples
(visits to a vertex) is roughly of the same order as the number of vertices n.

We compare the performance of the cycle-formula method and the weight-
random-walk method for estimating the number of vertices and the number
of triangles in the Google web graph. (Observe that these two methods are
exactly the same when used for estimating the number of edges: f(v) ≡ 1 for the



11

cycle-formula method and w(v, u) ≡ 1 for the weighted-random-walks method.)
For the weighted-random-walk method, the weights of the start vertex u are
wTRW (u) = d(u) + 2t(u) = 113095 and wV RW (u) = 855. The expected first
return times to vertex u are 1753 and 2002, respectively.

Figure 2 (parts 2 and 3) shows the estimates of the number of vertices com-
puted by the cycle-formula method and the weighted-random-walk method. The
top and middle parts of Figure 3 show the estimates of the number of triangles.
The convergence is slow for both methods, but the estimates given by the cycle
formula are more accurate, especially for the number of triangles.

To see if we can improve the performance of the weighted-random-walk
method for estimating the number of triangles, we varied the value of the param-
eter c in the edge-weight fiormula (3.10) to avoid distorting the already small
eigenvalue gap even further. The edge weight is w(e) = 1 + ct(e), the vertex
weight is w(u) = d(u) + 2ct(u), and the graph weight is 2m + 6ct(G). To sim-
plify the experiments, we used the correct value of m. The plots for c = 1 and
c = 1/10 are given in the middle and bottom parts of Figure 3, respectively. The
value c = 1/10 worked quite well, giving clearly better results than the value
c = 1, but not matching fully the performance of the cycle-formula method. The
value of c can be optimized by further experiments.

References

1. D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs.
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html.

2. A. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
5439, Volume 286, 509–512, (1999).

3. M. Bawa, H. Garcia-Molina, A.Gionis and R. Motwani. Estimating aggregates on
a peer-to-peer network. Technical Report, CS Dept, Stanford University (2003).

4. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.
Tomkins, and J. Wiener. Graph structure in the web. Computer Networks, 33,
309–320, (2000).

5. C. Cooper, A. Frieze. The cover time of random regular graphs. SIAM Journal of
Discrete Mathematics, 18.4 728-740 (2005).

6. C. Cooper, T. Radzik, and Y. Siantos. Estimating Network Parameters Using
Random Walks. Proc CASoN 2012. (2012)

7. A. Ganesh, A-M. Kermarrec, E. Le Merrer and L. Massoulie. Peer counting and
sampling in overlay networks based on random walks. Distrib. Comput. 20, 267–
278, (2007).

8. L. Katzir, E. Liberty, and O. Somekh. Estimating sizes of social networks via biased
sampling. Proc. WWW 2011, 597–606, (2011).

9. W. Feller. An Introduction to Probability Theory and Its Applications. Volume I.
Wiley, (1970).

10. J. Leskovec. Stanford network analysis package. http://snap.stanford.edu/, (2009).
11. L. Lovasz. Random walks on graphs: A survey. Bolyai Society Mathematical Stud-

ies, 353–397, (1996).
12. L. Massoulie, E. Le Merrer, A-M. Kermarrec, and A.. Ganesh. Peer counting and

sampling in overlay networks: random walk methods. PODC 2006, 123-132, (2006).
13. M. Mitzenmacher, E. Upfal. Probability and Computing. CUP (2005).



12

Fig. 1. Triangle-closing preferential-attachment graph. Estimate of number of edges,
vertices and triangles. The key from the top plot applies to all plots.
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Fig. 2. Google web graph. Estimate of the number of edges (top), the number of
vertices by cycle formula (middle), and the number of vertices by return times of
weighted random walks (bottom). The key is the same as in Figure 1.



14

Fig. 3. Google web graph. Estimate of number of triangles: cycle formula (top), return
times of weighted random walks with the weight factor c = 1 (middle), and c = 0.1
(bottom). The key is the same as in Figure 1.


