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ABSTRACT. The purpose of this lecture is to introduce the Kakeya set problem, the Kakeya
maximal operator, and the restriction problem, and to discuss the connections between those
three.

SECTION 0: INTRODUCTION

A Kakeya set is a compact set £ C R™ containing a unit line segment in every direction.
In other words, for every e € S™~1, there exists x € R, such that x+te € E, t € [—%, %}
A construction due to A. S. Besicovitch shows that such sets can be of measure 0. However,
this turns out to be the beginning rather than the end of the story, and our first question
is, what is the Hausdorff dimension of E?7 To show that the Hausdorff dimension of F is
d, it is enough to show that if {B(z;,r;)} is a cover of E (by balls of radius r; centered at

x;), then
(0.1) Y ori>c,

for any s < d, where C' is a uniform constant.
Define a tube centered at a of width 6 in the direction e by

N | =

(0.2) Tg(a):{xeR":\(x—a)-e\g , \(x—a)L-e|§6}

with e € S"~1, § > 0, and a € R™. Define the Kakeya maximal function f§ by

1
0.3 fi(e) = sup
(0:3) 3O = S TS @] Jro

|f1-

This definition is due to Bourgain. Our second question is, given € > 0, does there
exists C, such that

(0.4) 1£5 1 n(sn-1)y < Ced™ Il pn@ny?
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This estimate is related to our first question in the same way as the Hardy-Littlewood
maximal theorem is related to Lebesgue’s theorem on the points of density. We shall see
later that an affirmative answer to (0.4) implies that the Hausdorff dimension of a Kakeya
set in R" is n.

Let o denote the Lebesgue measure on the (n — 1)-dimensional sphere. Our third
question is, does

(0.5) HdeHLp(Rn) S HfHLP(da)
for all p > %, where A < B means that there exists a uniform constant C' such that
A < CB. It is not difficult to see that this inequality does not hold for p < % since

E(\r(ﬁ) =cos ({ —Z2) ¢ |_nTl+ small error. Inequality (0.5) is an example of the so-called
restriction phenomenon which has numerous applications in harmonic analysis and partial
differential equations. We shall discuss this topic in more detail later in these lecture notes.

Again, we shall see that the affirmative answer to our third question implies that the
dimension of a Kakeya set in R™ is n. Moreover, we shall see that weaker versions of (0.4)
and (0.5) still say something about the dimension of a Kakeya set.

This lecture is organized as follows. In Section I: Kakeya maximal operator, we shall
see that bounds for the Kakeya maximal operator imply the coresponding lower bounds
on the Hausdorff dimension of a Kakeya set. In Section II: The restriction phenomenon,
we shall analyze a variant of (0.5) from the same point of view. Finally, in Section III:
Technical appendix, we shall briefly discuss some of the analytic tools used in this lecture.

Acknowledgements. Most of the material in these lecture notes comes from the following
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[Tom Wolff2] T. Wolff, Recent work connected with the Kakeya problem, (preprint)
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SECTION 1: KAKEYA MAXIMAL OPERATOR

The purpose of this section is to establish a link between the first and the second question
in the introduction.
Suppose that we have the following restricted weak type version of (0.4):

(1.1) 1F5llg00 S 67 Sy 15

by which we mean that if A is any measurable set, and f = x4, then [{e € S"~1: f¥(e) >

1.4 . .
AH S (A6 Al7) , XA € (0,1]. A systematic treatment of the restricted weak type can
be found in, for example, ”Introduction to Fourier analysis on Euclidean spaces”, by E.
M. Stein and G. Weiss.
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Theorem 1.1. The estimate (1.1) implies that the Hausdorff dimension of a Kakeya set
is at least n — pa.

To prove the lemma, fix s < n — pa Let E be a Kakeya set and for each e € S*71, fix
z. € R" such that z. +te € E, t € [—3,1]. Let {B(z;,r;)} denote the cover of E by balls
of radius r; centered at x;’s. We must prove that (0.1) holds with s < n — pa. Note that
all the r;’s may be chosen to be < 1, since otherwise the estimate obviously holds...

One inconvenience we are facing is that r;’s may be very different in size. In an attempt
to correct for this annoyance, we define

(1.2) Ye={j:27% <r; <27FF)
Let Ex = EN{U{B(z;,7;) : j € Zx}}. Let B = B(wxj,2r;), and Ey = U{Bj : j € X}
Note that in the definition of F we are intersecting with E, whereas in the definition of

E;., we are not...
Since U, E), = E, the pigeonhole principle implies that given e € S*~1,

11 6 1
(13) ‘{te |:—§,§:| $e+t€€Ek} Z

n2 k2
for some k = ke, since >, 54 = 1.
Let Qr = {e € 8" : k = k.}. Clearly, Y |Q| = [S™~!|. It follows by the pigeonhole
principle that we can find a fixed k£ and a set 2 = Q, so that k = k. when e € 2, and

6 1
2 k2’

(1.4) €] >
where we have normalized things so that [S"~!| = 1.

The point. Since Fj contains many line segments, E;. contains many tubes of width 2-k,
We are now ready to use the tube technology, i.e the estimate (1.1) for f§ with 6 = 2-k,
We have
1

(1.5) 72
for any e € . Recalling the definition of f3 ., with f = xg;, we have

T2 (2)| <

e

SIT2 " (2e) N B

(1.6) %5 {eEQ k2Nf2 k(e)} {eES"_l'k2Nf2 x(e )H
On the other hand, (1.1) says that
(1.7 {e: @ s 5@} s 22m
It follows, up to logarithms, that
(1.8) 27keP S| E.
However, |E}| < |Sk]27%", so
(1.9) 2k(n—ap) < |3,
We are now ready to complete the proof. We have
(1.10) D rs > 27k 5| > o7 kegk(n—ap)

Xk
and we win because s < n — ap.
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SECTION 2: THE RESTRICTION PHENOMENON

The purpose of this section is to link the second and the third (and consequently the
first and the third) question in the introduction.
Applying Holder’s inequality and interpolation along with (0.5), we get

2n n+1,
q> D.
n—1

(2.1) | fdoll, < ||f||LP(dU)a p< n_1

Theorem 2.1. Suppose that (2.1) holds for a given p > 2 and q > 2. Then, withr = (%)I

and s = (123)’, the restricted weak type (r,s) norm of the Kakeya maximal operator is

< §2A%-D),

Applying Theorem 1.1 with p = r,q = s, and o = 2 (— — 1), we see that under the
assumptions of Theorem 2.1, the Hausdorff dimension of a Kakeya set is at least ﬁ —
n. Those familiar with classical restriction theorems may find the following observation
amusing. The classical Stein-Tomas restriction theorem says that (2.1) holds with p = 2
and g, = 2("+1) . Since 24 —In. —n = 1, we see that Stein-Tomas restriction theorem does not

provide us Wlth meanlngful information about the dimension of a Kakeya set via Theorem
2.1.

To prove Theorem 2.1, let {Tj};.vzl, T; = Tfj (a;j) be any collection of ¢ tubes with 6
separated directions e;. Let T} = {z € R" : §°z € T};} denote the dilation of T; by the
factor 672. Let x; and X; denote the characteristic functions of T} and TJ{ respectively.

Let C; denote a spherical cap of radius ~ 0, i.e

(2.2) Ci={e€S" 1ie-e;>1-C16%},

where C' is a suitable constant. Construct a bump function ¢; € C§°(C;) with

(2.3) gl =1, ¢; >0, and |[¢;]|, =~ 6",
and let
(2.4) ¥;(€) = exp(€ -6 %a;)p; (),

where exp(t) = 2™,

We want to argue that
(2.5) [ida]| > 6"y,

which would follow if the expression for @b/jd\a involved no cancellations. Indeed,

(2.6) ido = W; (€)ewp(—z - £)de

Sn—1
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(2.7) = eap(—(z — §"a;) - ¢;) /C $(€)exp(—(€ — e5) - (v — 6% ))dg,
J

and the estimate (2.5) follows by the uncertainty principle type reasoning.
Now the fun begins. Consider f =" ; +1);, where the signs are chosen randomly. Since
the supports of ;s are disjoint, we have

(2.8) 1fllzr(aoy S (NE"7H)7,

which implies, by the assumption of the lemma, that
— 1

(2.9) | fdoll, S (N§"7H)7.

It is time to get some mileage out of the & business. If we combine (2.5) and Khinchin’s
inequality, we get

—— q n—
(2.10) E(|fdo|’) 2 69 DY "X,
7

pointwise, where E() denotes the expected value of (). It follows that

(2.11) £ 15 x| S (ven e,
J

ok

0.K., I am being intentionally malicious here. To get (2.11), first establish the appro-

priate inequality with x} in place of x;, then use the fact that x; and x} just differ by the

scaling factor §—2, and, finally, take 2 of both sides.

Punchline. Let A be a set, f = x4, and
(2.12) Q={e: f5le) > A}.

Let {ej};.vzl be a maximal é-separated subset of 2 and for each j chose a 6-tube T} as
above with

(2.13) |ANT;| > ATy
Then

(2.14) NA™' <) [Ty n A
J
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(2.15) < 4"7H| 3
J

q
2

< AR (Vg 5RO

where the first line follows from (2.13), the second line by Holder, and the third line by
(2.11). Now, this is nice and all, but we need to relate it to an estimate for |Q2|. Let N5(£2)

denote the maximum possible cardinality of {e; };Vzl It is not hard to see that

(2.16) No() > 2

~ 6n—1

since e;’s are §-separated. Plugging this into (2.15) we see that

1-2 —1)g1-2 c—2(n—1)+4n
(2.17) Q"% S AT 7,
which means that
(2.18) Q] < ATLAlF§723-D
as promised. This completes the proof of Theorem 2.1.

In the next lecture we shall prove the (0.4) and (0.5) indeed hold in the plane. From

there, we shall venture forth into the wild jungle of higher dimensions.

SECTION 3: TECHNICAL APPENDIX
In Section II we made use of the following inequality due to Khinchin’s:

Lemma 3.1. Let {wi}fil denote a family of independent random variables taking on
values +1 with equal probability. Let {ai}fil denote a sequence of complex numbers.

Then
p N %
=1

51 8 (
where E() denotes the expected value of ().

N
E a;W;
=1

The proof can be found in many books. I personally recommend the proof given by
Tom Wolff in [TomWolff1]. There is a large number of beautiful applications of Khinchin’s
inequality. Among them is the Littlewood-Payley square function inequality and the proof
that the classical Hausdorff-Young inequality cannot be reversed. The former can be found
in many introductory harmonic analysis texts, whereas the latter is in the aforementioned
notes of Tom Wolff.



