
Basic skills II: summation by parts, dyadic blocks and
infinite sums

Alex Iosevich

April 2020

Alex Iosevich (iosevich@gmail.com ) Summation by parts April 2020 1 / 36



From finite to infinite

In the previous lecture, we considered geometric series and obtained
the basic formula

Ak + Ak+1 + · · ·+ An =
An+1 − Ak

A− 1
; if A 6= 1.

We begin this lecture by considering an infinite sum

∞∑
k=1

Ak .

The first step is to understand what it means to sum an infinite
number of terms.
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Infinite series

Given a sequence of real number a1, a2, . . . , an, . . . , define

SN =
N∑

k=1

ak .

We say that
∞∑
k=1

ak converges

if lim
N→∞

SN exists.
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What is a limit?

The definition we just gave begs the question. What does
limN→∞ SN mean?

We say that
lim

N→∞
SN = L

if given ε > 0 there exists M > 0 such that

|SN − L| < ε whenever N ≥ M.
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Examples of limits

The definition of a limit we just gave applies to any sequence SN of
real numbers- it need not come from a sum.

Suppose that

SN =
N + 1

N
= 1 +

1

N
.

When N gets larger and larger, 1
N gets smaller and smaller, so we

might guess that

lim
N→∞

1 +
1

N
= 1.
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Examples of limits (continued)

To make this idea precise, we must show that given ε > 0 there exists
M > 0 such that ∣∣∣∣1 +

1

N
− 1

∣∣∣∣ < ε whenever N ≥ M.

In other words, we must show that given ε > 0 there exists M > 0
such that

1

N
< ε.

It is not difficult to see that choosing M > 1
ε does the job.
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Examples of limits-a harder example

Let us consider a more complicated example. Suppose that

SN =
N2

N2 + N + 1
,

and we ask, what is
lim

N→∞
SN?

We start by observing that

N2

N2 + N + 1
=

N2 + N + 1

N2 + N + 1
− N + 1

N2 + N + 1
.
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A harder example continued

= 1− N + 1

N2 + N + 1
.

Since N2 grows much faster than N, we might guess that the limit is
1. To prove it, we must show that given ε > 0 there exists M such
that ∣∣∣∣ N + 1

N2 + N + 1

∣∣∣∣ < ε whenever N ≥ M.

Observe that N2 + N + 1 > N2 + N, so∣∣∣∣ N + 1

N2 + N + 1

∣∣∣∣ ≤ N + 1

N2 + N
=

1

N
.
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An even harder example

It follows that taking M > 1
ε does the job once again.

We now consider a more complicated example that we shall need later
in the lecture. Let

SN =
N

2N
.

We probably have an intuition that 2N grows much faster than N, so
the limit should be 0, but how do we prove this rigorously?
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Subsets of a set of size N

Consider the set of N objects {O1,O2, . . . ,ON} and consider all
possible subsets of this set.

For example, there is only one subset of size N, namely the original
set itself.

There are N subsets of size 1, namely the sets {O1}, {O2}, . . . , {ON}.

How many subsets of size 2 are there? Well, there are N choices for
the first element of the set and N − 1 choices for the second. The
order of the elements does not matter, so the number of choices is

N(N − 1)

2
.
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Subsets of a set of size N (continued)

It is clear that the number of subsets of size two is strictly smaller
than the total number of subsets. And how many of those are there?

Every subset can be encoded as a string of 1’s and 0’s. For example
{O1,O5,O7} can be encoded by the string

100010100 . . . 0.

We put a 1 in the k ’th slot if Ok is contained in the subset, and 0
otherwise.

It follows that the total number of subsets is equal to a number of
strings of 1’s and 0”s of length N. The number of such strings is 2N

since we have two choices for each slot.
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Subsets of a set of size N (concluded)

We just saw that the number of subsets of size 2 is equal to N(N−1)
2 ,

and the total number of subsets is 2N , from which we conclude that

N(N − 1)

2
< 2N .

It follows that
N

2N
≤ N

N(N−1)
2

=
2

N − 1
.
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Back to limN→∞
N
2N

We must show that given ε > 0, there exists M > 0 such that

N

2N
< ε whenever N ≥ M.

Choose M > 2
ε + 1. Then

N

2N
<

2

N − 1
< ε.

Enough of limits for now and back to sums!
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Infinite geometric series

Let’s take a look at
∞∑
k=1

Ak .

As we discussed before, in order to show that this sum converges, we
must show that

lim
N→∞

N∑
k=1

Ak exists.

We have

lim
N→∞

N∑
k=1

Ak = lim
N→∞

AN+1 − A

A− 1
= lim

N→∞

AN+1

A− 1
− A

A− 1
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Infinite geometric series (continued)

=
A

1− A
+

1

A− 1
lim

N→∞
AN .

If |A| < 1,
lim

N→∞
AN = 0

by a slight modification of the arguments we went over.

If |A| > 1, |AN | = |A|N is arbitrarily large as N grows, so

lim
N→∞

AN does not exist.
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The case A = 1

If A = 1,

SN =
N∑

k=1

1 = N so the limit does not exist.

If A = −1,

SN =
N∑

k=1

(−1)k = −1 if N is odd, and 0 otherwise.

The limit as N →∞ of SN does not exist, but proving this requires
some care.
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The case A = −1

Let A = −1 and suppose that there exists L such that

lim
N→∞

SN = L.

Let ε = 1
2 . Then no matter how large N is, either

|SN − L| or |SN+1 − L| is larger than
1

2
since |SN − SN+1| = 1

because

1 = |SN − SN+1| = |SN − L + L− SN+1| ≤ |SN − L|+ |L− SN+1|.
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Infinite geometric series: conclusions

In summary, we have shown that

∞∑
k=1

Ak converges if and only if |A| < 1.

Moreover, we have shown that if |A| < 1,

∞∑
k=1

Ak = lim
N→∞

AN

A− 1
− A

A− 1
=

A

1− A
.
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Close friends and relatives of the geometric series

In Part I of this lecture, we considered

N∑
k=1

kAk and
N∑

k=1

k2Ak .

We shall now consider these sums as N →∞ and we shall do all the
calculations from scratch.

Our first observation is that there is no point considering the case
|A| ≥ 1 because they will diverge just as in the case of the regular
geometric series.
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∑∞
k=1 kA

k

Using the fact that
k∑

j=1

1 = k ,

we write
N∑

k=1

kAk =
N∑

k=1

k∑
j=1

Ak =
N∑
j=1

N∑
k=j

Ak

=
N∑
j=1

AN+1 − Aj

A− 1
=

NAN+1

A− 1
− 1

A− 1

N∑
j=1

Aj
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∑∞
k=1 kA

k : taking limits

=
NAN+1

A− 1
− (AN+1 − A)

(A− 1)2
.

We must now compute

lim
N→∞

NAN+1

A− 1
− lim

N→∞

AN+1

(A− 1)2
+

A

(A− 1)2

= I + II + III .

We have already seen that II = 0 since |A| < 1. There is nothing to
be done with III , so matters have been reduced to considering I .
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limN→∞NAN

We have already seen that

lim
N→∞

NAN = 0 when A =
1

2
.

Note that we may assume that A is positive since

|NAN | = N|A|N .

There are many ways to compute the limit under consideration, but
we shall do it by modifying the argument for the case A = 1

2 .
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limN→∞NAN continued

We start by observing that if 0 < A < 1,

AN = 2N log2(A) = 2−N log2(A
−1),

where log2(A−1) > 0.

It follows that showing that

lim
N→∞

NAN = 0

amounts to showing that if 0 < A < 1,

lim
N→∞

N

2N log2(A
−1)

= 0.
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limN→∞NAN : reduction to counting

We must modify the method we used to study

lim
N→∞

N

2N
.

Using the fact

2N >
N(N − 1)

2

may not be enough because this implies that

2N log2(A
−1) >

(
N(N − 1)

2

)log2(A
−1)

,
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limN→∞NAN : more counting

and (
N(N − 1)

2

)log2(A
−1)

≤ N if log2(A−1) ≤ 1

2
.

In order to find the way out of this predicament, recall that we
concluded that

N(N − 1)

2
< 2N

because the number of subset of size two is smaller than the total
number of subsets of a set consisting of N elements.

But the number of subset of size K is smaller than the total number
of subsets of a set consisting of N elements for any K ≤ N!
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limN→∞NAN : even more counting

We conclude that

N!

(N − K )!K !
≤ 2N for 1 ≤ K ≤ N.

Observe that

N!

(N − K )!K !
=

N

K
· N − 1

K − 1
. . .

N − (K − 1)

1
≥ NK

KK
.

Letting log2(A−1) = β, we conclude that

2Nβ ≥ NKβ

KKβ
.
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limN→∞NAN : almost there

Since β = log2(A−1) ≤ 1
2 , we may choose K such that

3 ≤ Kβ ≤ 4.

Then
NKβ

KKβ
≥ N3

K 4
,

and this quantity is
≥ N2 if N ≥ K 4.
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limN→∞NAN : conclusion

We have just shown that if N is sufficiently large,

2N log2(A
−1) ≥ N2.

It follows that

NAN =
N

2N log2(A
−1)
≤ 1

N
,

and we conclude in the same way as before that

lim
N→∞

NAN = 0.
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Back to
∑∞

k=1 kA
k

We showed above that

∞∑
k=1

kAk = lim
N→∞

NAN+1

A− 1
− lim

N→∞

AN+1

(A− 1)2
+

A

(A− 1)2
.

We can now conclude that the right hand side is equal to

A

(A− 1)2
.
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An example

In the case A = 1
2 , we see that

∞∑
k=1

k

2k
= 2.

In one of the subsequent lectures, we are going to show that this sum
represents the ”expected” number of flips of a fair coin needed to
produce heads. Even without knowing much about probability, one
might guess that the answer is 2 since the probability of getting heads
on the first flip is equal to 1

2 .
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Estimating infinite sums

In this part of the lecture, we are going to prove that

∞∑
k=1

1

k
diverges,

while

∞∑
k=1

1

k2
converges.
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Harmonic series

As before, we consider

SN =
N∑

k=1

1

k
.

To prove that the infinite series does not converge, we must show that

lim
N→∞

SN does not exist.

We are going to show that

S2m ≥
m + 2

2
, which will do the trick.
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Dyadic blocks enter the picture

We have
2m+1∑

k=2m+1

1

k
≥ 1

2m+1
· 2m =

1

2
,

since the number of terms is 2m and every term is ≥ 1
2m+1 .

It follows that

S2m = S1 +
m−1∑
j=0

S2j+1 − S2j

≥ 1 +
m

2
=

m + 2

2
.
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Harmonic series concluded

Let us now prove rigorously that the harmonic series diverges.
Suppose for the sake of contradiction that the sum converges. Then

lim
N→∞

SN = L for some L <∞.

Let ε = 1. Then by definition of a limit, there exists M such that

|SN | ≤ |SN − L|+ L ≤ L + 1 whenever N ≥ M.

But this is blatantly untrue since we have shown that

S2m ≥
m + 2

2
.
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∑∞
k=1

1
k2

As before, we consider

S2m+1 − S2m =
2m+1∑

k=2m+1

1

k2
≤ 1

22m
· 2m

since every term is ≤ 1
22m

and there are 2m terms.

It follows that
∞∑
k=1

1

k2
≤
∞∑

m=0

2−m = 2

and we already know that this sum converges.
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Some concluding thoughts

It turns out that
∞∑
k=1

1

k2
=
π2

6

and this is related to the fact that the probability that two randomly
chosen positive integers are relatively prime is

6

π2
.

Much beautiful mathematics lies ahead!!
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