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Packing problem
“How many disks of diameter d can you fit into an a-by-b
rectangle?”

For instance, how many disks of diameter 6 feet can you fit into a
12 foot by 24 foot rectangle?

Can anyone see how a problem like that carries over to a timely
application?
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Distancing problem

“How many people can we fit into a 6-foot-by-18-foot rectangle if
we require that nobody is within less than 6 feet of anyone else?”

What’s the connection?
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Connecting the two problems

Imagine each person carries around a personal bubble whose
diameter is 6 feet, that is, whose radius is 3 feet.

Requiring that two people be at least 6 feet apart is equivalent to
requiring that their bubbles don’t overlap.
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Connecting the two problems

The bubbles extend beyond the 6-by-18 rectangle, 3 feet in each
direction, so those bubbles lie in a 6+3+3 by 18+3+3 rectangle.
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Connecting the two problems

If the people in the 6-by-18 hallway are all 6 feet apart, then
their bubbles are disjoint disks in an imaginary 12-by-24 rectangle,
and vice versa.

So figuring out good ways to pack disks can tell us good ways to
physically distance.
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Precept #1

Different representations
suggest different tools.
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What’s obvious?

We can fit 8 people into the hallway:

It’s obvious that there’s no way to add a 9th person without
violating distancing.
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What’s obvious?

It’s also true that there’s no way to fit in 9 people even if you
remove the other 8 and start from scratch, and maybe you think
this is obvious, but one of my goals is to make you feel half an
hour from now that it isn’t really so obvious.
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Down to 1 dimension

Scheduling problems can sometimes be thought of as
1-dimensional packing problems.

Say we’ve got some resource (it could be a person, it could be a
place, it could be a thing) that needs to be shared on a schedule.

To make the problem specific, say it’s a piece of medical
equipment, and the treatment schedule is that each patient needs
1 hour of treatment, followed by an hour of rest, followed by 1
more hour of treatment.
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Scheduling problem

If we schedule the patients in three-hour blocks, then the machine
is being used only 2/3 of the time.
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Scheduling problem

But if we schedule the patients in pairs, like this, then the machine
is being used all the time, and we can treat more patients.
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Scheduling as packing

You can think of our scheduling problem as a packing problem
where the pieces being packed look like

but the two halves of each piece have to shift horizontally in
tandem, maintaining the space between them.
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2 on, 2 off, 1 on

Here’s a problem we’ll do together.

Suppose each patient needs 2 hours on the machine, 2 hours of
rest, then 1 hour of treatment.

How can we set up a schedule to make the most efficient use of
the machine?
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2 on, 2 off, 1 on

If we don’t interleave patients at all, we get a schedule that is only
3/5 = 60% efficient.

15 / 36



2 on, 2 off, 1 on

But there’s a schedule where the machine gets used 6/7 ≈ 86% of
the time.
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2 on, 3 off, 1 on

Here’s a problem you’ll do in groups.

Suppose each patient needs 2 hours on the machine, 3 hours of
rest, and then 1 hour on the machine.

How can we set up a schedule to make the most efficient use of
the machine?
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(Intermission)
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2 on, 3 off, 1 on

If we don’t interleave patients at all, we get a solution with
efficiency 3/6 = 50%:
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2 on, 3 off, 1 on

Here’s a solution with efficiency 6/8 = 75%:
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2 on, 3 off, 1 on

Here’s a solution with efficiency 100% (aside from a hiccup at the
start when the machine goes unused for a single hour):
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Precept #2

Long-term goals require
long-term planning.
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Back to two dimensions

Say I have a long skinny tray that’s just wide enough to
accommodate two quarters at the end, but it’s a mile long.

Say I offer you as many quarters as you can pack into the tray, laid
flat with no stacking. No tricks allowed, just geometry.

What’s the best way for you to get quarters?
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Back to two dimensions

You could stick them into the corners in the obvious way:

That’s gotta be optimal, right? ...
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Precept #2

Long-term goals require
long-term planning.
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Back to two dimensions

The optimum looks like this:
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Precept #3

Be very, very, VERY careful
about calling things “obvious”.
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Packing without boundaries

This surprising phenomenon is related to the fact that in two
dimensions, if we don’t have boundaries to worry about, and we’re
just trying pack disks densely in the unbounded plane, the most
efficient way to do this is what’s called “hexagonal close packing”.
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Square close packing

Square close packing has packing fraction π/4 ≈ 79%.

29 / 36



Hexagonal close packing

Hexagonal close packing has packing fraction π
√

3/6 ≈ 91%.

In 1940, Laszlo Fejes-Toth, building on earlier work by Axel Thue
in 1890, showed that this is the optimal packing fraction.
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Proving the not-so-obvious

Theorem: If you place nine points in a 6-by-18 rectangle, two of
them will be a distance less than 6.

(I hope you agree it’s not obvious, or at least not as obvious as it
was before I told you that it becomes false if we replace 18 by
18,000!)
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Proving the not-so-obvious

Proof: Divide the big 6-by-18 rectangle into eight small
6/2-by-18/4 rectangles.

If you place nine points in the big rectangle, two of them must
belong to the same small rectangle (by the pigeonhole principle).
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Proving the not-so-obvious

But that means the distance between those points is at most
the length of the diagonal of the small rectangle, which is√

(6/2)2 + (18/4)2 =
√

29.25 <
√

36 = 6.)
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Three dimensions

What is the most efficient way to pack spheres of diameter 1?

One obvious way to pack them into space so that no two of them
overlap is to situate them in a cubical lattice, with centers at the
points (x , y , z) where x , y , and z are all integers.

The packing efficiency is π/6 ≈ 52%.
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Three dimensions

A better way is the “grocer’s packing”, with packing efficiency
π
√

2/6 ≈ 74%. You lay down a 2-dimensional close packing, and
then another layer, and then another, etc.

The optimality of this packing was proved by Tom Hales in 1998.
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Thanks!

Slides for this talk are at http://jamespropp.org/cvls20.pdf .

See my Mathematical Enchantments essays Sphere-packing
and Believe it, then don’t: toward a pedagogy of discomfort.

I recommend Patrick Honner, The Math of Social Distancing Is a
Lesson in Geometry.

In June I gave a virtual talk called Packings in one, two, and three
dimensions: a macro-meso-microscopic view (slides, abstract, and
video available).

The preprint Germ order for one-dimensional packings (by
Abrams, Landau, Landau, Pommersheim, Propp, and Russell)
applies calculus (specifically power series) to the study of packings.
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