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1 Introduction

This is an undergraduate-level math textbook. It is quite special because instead of specializing
on a given topic, it wanders through fields as different as Calculus, Number Theory, Probability,
Algebra and Geometry. The mathematics presented in it have no immediate relation to computing
and algorithms, except maybe for the fact that one of the chapters is dedicated to Number theory,
Probabilities and the Riemann ζ function.

2 Summary

Chapters 1–4

This book operates like a Mahler Symphony: it starts very softly, and before you realize it, you are
in deep water, with drums and trumpets sounding all around you. Chapter 1 deals with Cauchy-
Schwartz12 inequality in its simplest form

∑
akbk ≤

√∑
a2
k

√∑
b2k, proven by just a few lines of

“high school math” (a much simpler way to express it is 〈a, b〉 ≤ ‖a‖ · ‖b‖).
This inequality is true, but the author can do better, because, as he says, “to say something

interesting, one must walk on the very edge of the cliff of falsehood, yet never fall off.” He gives a
better version of it, the Hlder inequality:
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m′ , where m′ is the “dual” of
m given by 1

m + 1
m′ = 1. There is also a generalization of this formula to n-term products.

In Chapter 2 the author deals with a first unexpected use of Cauchy-Schwartz inequality: take
N distinct points in R3 and their canonical projections to the three planes, and count the number of
distinct points you obtain on the planes. We want that number to be minimal. If you think about
it, one can always choose the points in such a way that their projection on one plane is minimal:
a single point, for example. But once you have done it for one plane, it is hard, or even impossible
to reduce the number of projected points on the other planes.

Using Cauchy-Schwartz, the author quantifies this phenomenon: if SN is the set of points, and
#πj(SN ) the cardinal of the j-th projection, then, however you may arrange the points in space,
at least one of these numbers will always be greater than 3

√
N2 (for example, for 100 points, you

will always have at least 22 points projected on one of the planes).
11©2011, Yannis Haralambous.
12Amusingly enough, the author breaks a record by writing the same name in three different ways on a single page

(p. 4): Schwarz (the German way), Schwartz (the French way) and Schwarts (the Yiddish way).
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In Chapter 3 he deals with two-dimensional projections of a set of points in R4. The result
is that the cardinal of the set is upper bounded by the cubic root of the product of cardinals of
projections on planes (1, 2), (1, 3), (1, 4), (2, 3), (2, 4) and (3, 4). To prove this he uses a very
interesting interpolation result which goes as follows: let ‖a∗‖s be (

∑
as∗)

1
s , then if ‖a∗‖1 ≤ C1 and

‖a∗‖2 ≤ C2 then for an arbitrary 1 < s < 2 we have ‖a∗‖s ≤ C
2
s
−1

1 C
2− 2

s
2 .

The general case of k-dimensional projections if Rd has been treated by Loomis-Whitney in [4].
Chapter 4 is again about projections, but this time from a different point of view. It deals with

comparisons of unit balls (balls of volume 1) and unit cubes in Rd. For example, take the 2-ball
(that’s a circle). The 2-cube (that’s a square) does not fit inside the 2-ball, but the projection of
the 2-ball (a centered segment of length 2√

π
) contains the projection of the 1-cube (if this projection

is parallel to a side of the square). The author asks the question: what should be the dimension
of our projections for this to happen? It turns out that for an n-ball, we need to project onto a
subspace of dimension k ≤ 4

π (n!)
1
n (for n = 2 we do find k = 1). Having established that, the

author delves into approximations of this formula, leading to the well-known Stirling formula.

Chapter 5

This is where we get into deep water. Given is the incidence problem: what is the maximum
number of intersections of n lines? By simply using the Cauchy-Schwartz inequality, the author
shows that it is less than

√
2n

3
2 . He states the “sharp answer” (given in [5]): it is less than Cn

4
3 ,

where C is a positive constant.
From this, the author derives quite a surprising result: take a complete graph with N vertices

embedded into R2, and measure the lengths of edges. We are interested in the minimum number of
such lengths. One would expect that using symmetry it would be easy to calculate the minimum
number of distinct edge lengths of a complete planar graph.

Well, this is not the case. Using the results of the book, one can prove that the number of
distinct edge lengths is larger than C

√
N , and the author states that the best known lower bound

is CNβ with β ≈ .86 (cf. [3]) and that there is a conjecture on the value C N√
log(N)

. Like Goldbach,

this is yet another conjecture which is so easy to formulate that one can only wonder how come it
hasn’t been proved yet.

And here the author brilliantly jumps into a different domain of math: number theory. Take
A to be a finite subset of Z and count the number of all possible sums a + a′ and products a · a′,
where a, a′ ∈ A. If #A is the cardinal of A then the cardinal of such sums and products is lower
bounded by C(#A)

5
4 .

And then, switching to yet another domain, namely graph theory, the author proves that the
number of crossings of a planar graph G with n vertices and e edges, is minorated by C e3

n2 .
If you think this is as acrobatic as it can get, you are wrong: to prove this result the author uses

probability methods (!). The authors of [5] take a random subgraph G′ of G where every vertex
is chosen with uniform probability p: then the expectation of “surviving” vertices is np, the one
of edges is ep2, and the expected value of the crossing number is upper bounded by p4 times the
crossing number of G.
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Chapters 6–8

After calculus, graph theory, number theory and probability methods, we turn now to algebra, more
precisely to vector spaces over finite fields Fp (where p is prime). After explaining why Fp is a field
and how we can define vector spaces and lines on it, the author presents the Besicovitch-Kakeya
conjecture, which states the following: if B is a subset of a d-dimensional vector space over Fp, big
enough to contain, for a given point x, lines going through x with all possible slopes, then the size
of B is lower bounded by Cpd, where C is a positive constant. We call a point of intersection of
several lines a “bush,” and the conjecture says that for every such vector field there is a large bush.

Chapter 7 proves this conjecture for R2 using (guess what!) the Cauchy-Schwartz inequality
[1]. And Chapter 8 develops some of the difficulties of the high-dimensional case of the conjecture.

Chapters 9–10

After a long, although elementary in nature, introduction to probabilities (Chapter 9) the author
deals with the interaction of probabilities and number theory: how can we estimate the probability
that two (arbitrary) numbers are relatively prime? He easily establishes that this probability is 1

ζ(2)

(where ζ is the Riemann zeta function), and after some pages of calculus shows that the numerical
value of this expressions is 6

π2 .

Chapters 11–12

Chapter 11 is about three upper bounds: if f is a differentiable function, R a parameter and
If (R) =

∫ b
a exp(iRf(x))dx, then: if f ′ is strictly monotonic with f ′(x) ≥ 1, we have |If (R)| ≤ 4

R
(van der Corput theorem), and if f ′′(x) ≥ 1, then the inequality is a bit weaker: |If (R)| ≤ 10√

R
.

The third upper bound is about the characteristic function χD of the unit disk in the plane and
its Fourier transform χ̂D(ξ) =

∫
D exp(−2πixξ)dx. The author shows that |χ̂D(ξ)| ≤ C|ξ|−

3
2 .

In Chapter 12, the author applies the results of Chapter 11 to the following setting: let N(t) =
#{tD ∩ Z2} be the integer points of the disk of radius t in R2. As we know from school, the area
of tD is πt2, and this number is an approximation of N(t). It happens that many mathematicians
have tried to find an upper bound of the difference E(t) = N(t)− πt2.

Once again the author brilliantly shows how close a simple textbook exercise can be to a
difficult result, and even to an unsolved century-old conjecture by Hardy (the British friend of
legendary mathematician Ramanujan): the upper bound |E(t)| ≤ Ct is given as a simple exercise,
|E(t)| ≤ Ct

2
3 is proven (Sierpinski, 1903), and ∀ε > 0∃Cε such that |E(t)| ≤ Cεt

1
2
+ε is Hardy’s

conjecture. It seems that the best known proven result (Heath-Brown) is |E(t)| ≤ Ct
19
15 and the

author “conjectures” that the Hardy “Holy Grail” conjecture will be proven sometime in the 24th
century. . .

Chapter 13

In Chapter 13 the author returns to finite fields Fp and defines the NTT (number-theoretic Fourier
transform) f̂(m) = p−d

∑
x∈Fd

p
exp(−2πi

p (−x ·m))f(x). He proves the Fourier inversion formula, as

well as the Plancherel theorem saying that the sum of squares of f̂ (taken over all elements of Fdp)
is p−d times the sum of squares of f .
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The last move of the book is to establish a connection between the Fourier transform of a subset
E of Fdp and the cardinal of the set of points (x, y, x′, y′) of E4 such that x+ y = x′ + y′ :∑

m∈Fd
p
|Ê(m)|4 = p−3d#{(x, y, x′, y′) ∈ E4 | x+ y = x′ + y′}.

The author shows that the cardinal of this set takes C(#E)2 as upper bound. As an example of a
set satisfying this inequality, one can take E = {x ∈ Fdp | xd = x2

1 + · · ·+ x2
d−1}, in this case C = 1.

These results lead to the fact that if A is a subset of Fdp of reasonable dimension (
√
p ≤ #A ≤

Cp
7
10 ) then

max{#(A+A),#(A ·A)} ≥
√

(#A)3
4
√
p

which is given as an exercise, and proven in a 2007 paper [2] by the author et al.

3 Opinion

In one of his most famous poems, Cavafy says13 “Ithaka gave you the beautiful journey. // Without
her you would not have set out. // She has nothing left to give you now. // And if you find her
poor, Ithaka won’t have fooled you. // Wise as you will have become, so full of experience, //
you will have understood by then what these Ithakas mean.” This is also the method of this book:
there is no unique great result, no spectacular finale—but there is a journey. A journey through
several domains of mathematics, interrelated and interacting.

Clearly the book is intended for undergraduate students, and it could very well have been a
transcription of lecture notes: several times the author uses a purely oral style, like on p. 36:
“Suffering is unavoidable here. . . so please do not start complaining if you are not done in two
or three hours. . . ” Sometimes the author uses all-caps words and multiple exclamation marks
for emphasis, like on p. 67: “DO NOT stop here! Always look for generalizations and variants!
ALWAYS!! Yes, I am shouting. . . WORK IT OUT!!!” Due to the author’s natural charisma, the
book is pleasant to read. Furthermore, the fact of wandering through so many areas of mathematics
makes one feel confident and opens new horizons.

These are the positive aspects of the method used. But one also could object that there are
no solutions given for the many exercises, so one is entirely left on his/her own. Also it is not
always clear for what reason the author examines specific topics. A typical example is the issue
of calculating the dimension of unit ball projections needed to contain a unit square: what makes
this an important problem in the first place?

As already mentioned, it is quite a thrill to discover that just by slightly changing a trivial result
one gets hard problems and conjectures. Many statements in the book are Goldbach-like: trivially
easy to formulate, and yet unsolvable, or, at least, unsolved up to date. But are they important
because they carry the name of some famous mathematician?

Maybe the main interest of the book is to give a sense of unity of mathematics. Its title is “A
View from the Top” and indeed one has the impression of being on the top of some skyscraper
and looking at the various neighborhoods of a town (neighborhoods called calculus, probabilities,
number theory, algebra, Fourier transform, etc.), watching people live their ways in every one of
them, and discovering connections and similarities between them.

13Transl. Ed. Keeley & Ph. Sherrard, Princeton University Press, 2009.
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I recommend this book to people who are curious about discovering things that are usually not
taught, nontrivial interconnections and unexpected Goldbach-like conjectures. Time and energy
will be needed to, at least, give a try to the many exercises. And the reader will have to try hard
not to get frustrated with being unable to solve some/many of them.

The book finishes with a Knuthian exhortation which is so nice and so universal, that I can’t
avoid giving it here: “Can you anticipate further developments? Can you formulate key questions
that could lead to further progress? Are you willing to tirelessly search the research journals and
the internet to find out what the concepts you have been introduced are connected to? This book
can only be called a success if it causes you to do all these things and more. Good luck!”
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