
Universal Approximation

Theory, Neural Network and

Fractal Dimension

J. Fleischman, F. Iulianelli, M. Martino, S. Pack,
C. Taliancic, N. Whybra, and K. Zhao

Tripods REU 2021
Supported by US NSF HDR TRIPODS 1934962

August 13, 2021

1/37

Outline:

I Universal approximation theorem using Neural Network

I Fractional Dimension

I Experiment

I Future research and open questions

I References

2/37

Part I: Universal Approximation Theorem

3/37

Approximation Theorem

Motivation.

Assume you’ve been given a wavy function, such as f (x), as
shown below:

One of the most impressive aspects of using a Neural Network
is its ability to approximate the value of any function up to
some precision, no matter how complex it is.

Universal Approximation Theorem guarantees this
approximation for continuous functions.

4/37

First few definitions:

Definition
I We say that f : Rd → C is ρ-Lipschitz continuous if for

any x , y ∈ Rd the inequality |f (x)− f (y)| ≤ ρ|x − y |
holds.

I We say that f : Rd → C is Hölder continuous of order
α ∈ (0, 1] if there exists a constant ρ > 0 such that

|f (x)− f (y)| ≤ ρ|x − y |α.

5/37

Theorem (Universal Approximation Theorem)

Let f : [−1, 1]d → [−1, 1] be a ρ-Lipschitz function. Then, for
any fixed ε > 0, there exists a Neural Network
N : [−1, 1]d → [−1, 1], with the sigmoid activation function,
such that |f (x)− N(x)| < ε for any x ∈ [−1, 1]d .

We show the proof for slightly general case.

Theorem
Let f : [−1, 1]d → [−1, 1] be a continuous function. Then, for
any fixed ε > 0, there exists a Neural Network
N : [−1, 1]d → [−1, 1], with the sigmoid activation function,
such that |f (x)− N(x)| < ε for any x ∈ [−1, 1]d .

6/37

Corollary
The Universal Approximation Theorem also holds for Lipschitz
and Hölder continuous functions.

7/37

Sketch of proof of approximation theorem:

For the sake of simplicity, we prove it in dimension d = 1.

I Any continuous function on a compact set is a uniform
continuous.

I For a given precision ε, we divide the interval [−1, 1] into
smaller sub-intervals with sufficiently small length.

I For any sub-interval, we find a “Box” function that can
approximate the value of the function in that interval
with error ε:

|f (x)− αiB(x , bi)| < ε

8/37

Sketch of proof of approximation theorem-
continued:

I In place of the sigmoid function, the heaviside function
has similar behavior and can be used easily for an
indicator function.

I Using a translation of the function, we can calculate the
distance between the leftmost and rightmost sides of an
interval.

cj ,1

(a) Figure A

cj ,1cj ,2

(b) Figure B

cj ,1cj ,2

(c) Figure C

Figure: Box Function and Translation 9/37

Use of Sigmoid function.

Any sigmoidal function can be used in order to approximate
the Heaviside function:

I The most commonly used type of functions is the sigmoid
function σ(x) = 1

1+e−x .

I This function is an S-shaped curve where:

lim
x→y

σ(x) =

{
0 y = −∞
1 y =∞

(1)

10/37

Use of sigmoid function: continued.

I We can use the following approximation for the heaviside:

lim
α→∞

σ(αx) = 1[0,∞)(x) (2)

I In this way, choosing an adequately large value for α, the
Sigmoid function approximates the heaviside function.
For instance, this would work: σ(x) = 1

1+e−100x

I In the construction of Neural Networks, this
approximation is used in order to have an everywhere
differentiable activation function.

I This property is required in some learning algorithms

11/37

Figure: Neural Network in d Dimensions

12/37

Pictorial proof using Neural Net

Figure: Input Layer

Figure: First Hidden Layer

13/37

Pictorial proof using Neural Net

Figure: Second Hidden Layer Figure: Output Layer

14/37

Summary

Figure: Neural Network in d Dimensions

15/37

Future research

I We are interested to know how some features of functions
affect our neural network. More specifically

I How the size of the fractional dimension of graph of a
function will affect the run time of a neural network?

16/37

Part II: Fractal Dimension

17/37

Is Nature Smooth?

I To model real word data sets we often try to use smooth
functions like f (x) = ex

I The problem is: nature is usually not smooth

Figure: A time-series plot of the daily temperature in Helsinki, Finland
over the course of a few years.

18/37

Introducing Fractal Dimension

I In linear algebra, there is a notion of vector space
dimension

I For instance a point has dimension 0, a line dimension 1,
a plane dimension 2, etc.

I However there are other notions of dimension
(Box-counting, Hausdorff, Correlation, Information, etc.)

I These notions of dimension agree with the vector space
dimension for all sets with integer valued dimensions, but
expand on the idea by allowing for sets of non-integer or
“fractal” dimension

19/37

Introducing Fractal Dimension

I Fractal sets often display a property called self-similarity.
I Informally this means that the graph looks the same when

you zoom into it. For instance the Koch curve below has
this property and has box-dimension ≈ 1.26

I Curves with fractal dimension often make appearances in
time series data sets and motivates us to try modeling
data using functions with fractal dimension

20/37

Our Goal

I We consider a time series, i.e. a set

Pn =
{
pa :=

(a
n
, f
(a
n

))
: 0 ≤ a ≤ n

}
where f : [0, 1]→ [0, 1].

I The notions of dimension discussed earlier really only
apply to continuous curves, but we are dealing with a
discrete time series

I To resolve this, we use something called the “discrete
energy” of Pn which is defined as

Is(Pn) =
∑
a 6=a′

|pa − pa′|−s

21/37

Our Goal

I Let γ be the graph of a function f . Then the discrete
Hausdorff dimension of γ is the largest value of s such
that Is(Pn) is bounded independently of n, or

dimH(γ) = sup{s : Is(Pn) ≤ C}

where C has no dependence on n.

I Any Lipschitz (e.g. smooth) function has a Hausdorff
dimension of 1. This makes sense since we are essentially
plotting lines!

I It makes no sense to consider functions with dimensions
greater than 2. (Intuitively: If a plane is 2 dimensional,
how does one plot something of dimension bigger than 2
on the plane itself?)

22/37

Our Goal

I This means s has to be in the range [1, 2].

I If our goal is to model functions with fractional
dimensions, it helps to know what some of these
functions are! So the natural question to ask is...

I For every s in [1, 2], can we can construct a function
fs : [0, 1]→ [0, 1], so that the discrete Hausdorff
dimension of the graph of fs is s?

I The answer is: Probably yes, but we haven’t figured it
out yet...

23/37

Possible Solutions?

I The Mandelbrot-Weierstrass function:

W (x) =
∞∑
i=1

λ(s−2)i sin (λix)

where λ > 1.

I W (x) has been shown in [A. Zaleski, 2012] to have a
box-dimension of s for s in [1, 2] when λ is big enough.

I The problem with W (x) is that it’s pretty complicated
and we are ideally looking for something more simple.

I Also the result was shown for the box-dimension and not
the discrete Hausdorff dimension.

24/37

Possible Solutions?

I The Koch curve is constructed by removing the middle
third of a line segment and making an equilateral triangle
such that there are now 4 line segments that all have
length 1

3
. This process is repeated on all the new line

segments, and this continuous forever.

Figure: Construction of Koch curve.
25/37

Possible Solutions?

I In each iteration, the line segments shrink by a factor of
1
3
, and the dimension of the curve is 1.26.

I If we change the scaling factor a = 1
3

to something else,
can we get all dimensions between 1 and 2?

I Sadly no. [K. Falconer, 2014] has a theorem that says
that a must be in [0, 1

3
], and if s solves the equation

as + 2
(
1
2
(1− a)

)s
= 1, then dimH(Curve) = s.

I By changing a, we can only achieve s in [1, 1.26...] this
way.

26/37

Possible Solutions?

I There is still room to play with this idea. Maybe we can
change the number of line segments generated in each
iteration and make different shapes?

I The main problem with this approach is that it involves
looking at a weirdly defined curve and not an easily
written function.

Other Ideas:

I Generalization of Cantor Set?

I Generalization of Devil’s Staircase?

I Weird conditions on a general function f ?

27/37

Part III: Experiment and Simulations

28/37

Motivating Questions

I How does Hausdorff Dimension empirically appear to
influence the learnability of a function?

I Does the chaoticness and tendency to fluctuate inherent
to many functions with a non-integer Hausdorff dimension
limit this learnability?

I Is it ultimately possible for a neural network to, under
reasonable run-time constraints, approximate any fractal
time series?

29/37

Experiment 1 Outline

Examining the Empirical Relationship between Hausdorff
Dimension of a Time Series and Run-time and Test Error

I The Mandelbrot Weierstrass function returns!

W (x) =
∞∑
i=1

λ(s−2)i sin (λix)

(although s is only the box-counting dimension D0, this is
useful information as it does bound the Hausdorff
dimension from above).

I Different values of s give different ranges of D0

30/37

Experiment 1 Details

Neural Network training logistics

I Fractal dimensions represented: 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8

I For each dimension, the training dataset was defined
{xi = i/n : i ∈ [1, n]}, corresponding expected outputs
were W (xi)

I The test dataset was defined
{xj = (2j − 1)j/2n : j ∈ [1, n]}, corresponding expected
outputs were W (xj)

I Thus the neural network was essentially being trained to
interpolate between points in the time series

31/37

Experiment 1 Preliminary Results

32/37

Experiment 2 Details

I Henon Map:
xn+1 = 1− ax2n + yn

yn+1 = bxn

I a = 1.4 and b = 0.3 give strange attractor (Lyapunov
exponents λ1 = 0.603 and λ2 = −2.34)

I Estimating box-counting dimension D0 from D1 using
Kaplan Yorke (D1 = D0 because the Henon map is
invertible [Young, ’84]):

D0 = D1 = 1 +
0.603

2.43
≈ 1.26

I Network trained with degree 4 time delay embedding.
Input: tuple of four consecutive time series values
{x = (xτ , xτ−1, xτ−2, xτ−3) : τ ∈ [4, n]}.
Expected output: xτ+1, the next value of the time series.

33/37

Experiment 2 Background

Chaos and Fractal Dimension are closely related

I Lyapunov exponents- divergence of initially close orbits in
phase space (determinism but not predictability)

I How does dimension and chaos (quantified by Lyapunov
exponents) relate?

I Kaplan-Yorke Conjecture (2D case, [Ledrappier-Young ’88])

D1 = 1 +
λ1
|λ2|

(where D1 is information dimension and satisfies
D1 ≤ D0)

I Empirically - how does learnability hold up in the chaotic
case of a fractal dimension system?

34/37

Experiment 2 Preliminary Results

35/37

Future Work

I Ultimate Goal: Prove that a function f such that
1
n2

∑
j 6=j ′ |f (j

n
)− f (j ′

n
)|
−s
≤ C independent of n for some

s ∈ [1, 2] can be approximated with a neural network ”on
average”

I We will formalize ”on average” - need some sort of
alternative definition of learnability (pointwise
convergence unlikely)

I Find a way to generate a function f with Hausdorff
dimension s for any s ∈ [1, 2] (we’re investigating the
dimension on the Koch snowflake curve)

36/37

References

[Ledrappier-Young, 1988] Ledrappier, F. and Young, L. -S.
Dimension Formula for Random Transformations, Comm.
Math. Phys. 117, 529, (1988).

[Young, 1984] Young, L. S. Dimension, Entropy, and Lyapunov
Exponents in Differentiable Dynamical Systems. Phys. A 124,
639-645, (1984).

[K. Falconer, 2014] Falconer, F. Fractal Geometry:
Mathematical Foundations and Applications. pg. 142, (2014).

[A. Zaleski, 2012] Zaleski, A. Fractals and the
Weierstrass-Mandelbrot Function. pg. 93-100, (2012).

37/37

	Background
	Background

