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The Finite Element Model (FEM)
- PDEs are very hard to solve, and even harder to 

solve on irregular domains!

- Numerically, we can discretize any domain into a 
mesh of simpler pieces.

- Next, define a vector space with a basis over 
the mesh you’ve created.

- Approximate your solution with this basis!

- A finer mesh means a better approximation.

- Store the solution in in this basis as a vector 
and evolve it with an operator dependent on the 
PDE.



Example: The Heat Equation with FEM
- First, we invoke a weak formulation of the PDE by 

multiplying both sides of it by a “test function” v and 
then integrating over the domain.

- Next, we rewrite the Laplacian term (integration by 
parts) and introduce the numerical implicit Eulerian 
scheme, after choosing a dt and mesh.

- The n index represents timestep number, and the 
basis on this mesh incorporates our boundary 
conditions.

- We define the mass matrix M and bilinear form L as 
linear operators in our finite element space, and are 
able to compute the next timestep!



Pattern Formation and the Reaction-Diffusion Equation
- Chemical concentration populations u and v are reacting 

on a domain. The D terms represent diffusivity, and 
the R terms represent interactions.

- The Brusselator Model assumes a specific set of 2 
non-linear reactions R between u and v, including feed 
terms F and kill terms K for u.

- A pattern is any noticeably distinct behavior of the 
system, such as waves, dots, or constant value. The 
system will often converge to them,  but a pattern can 
also be oscillatory or unstable.

- Reaction-diffusion equations are very good at forming 
patterns! (Turing instability)



Brusselator
The Brusselator is a model for a chemical oscillator it describes how two chemical species interact and diffuse in space. The 
concentrations X(t) and Y(t) change continuously over time in a repetitive, wave-like manner, showing periodic increases and 
decreases.

Reaction terms
Numerical method

It describes the interaction between two chemical species  usually 
denoted X and Y, that participate in a hypothetical reaction scheme

A and B are constant feed chemicals.  D and E are 
waste products. The step:  2 𝑋 + 𝑌 → 3X , 
2X+Y→3X makes X replicate itself.



X= 1, Y= 3



X= 1, Y= B/A + 0.1 * exp(-20 * 
((x-1.5)**2 + y**2)), x, y are positions. 



Gray Scott Model



Gray Scott Model
With the following parameters:



Brusselator: Inner circle with Dirichlet Boundary condition. Order = 1.



Brusselator: Inner and Outer circles with Dirichlet Boundary Condition. 
Order = 1. 



Brusselator: Inner and Outer circles with Dirichlet Boundary Condition. 
Order = 2. 



Brusselator: Inner and Outer circles with Dirichlet Boundary Condition. 
Order = 2. 



Finite Difference for Wave Chimeras in
Reaction Diffusion

- Oscillator-environment coupled reaction-diffusion (OECRD) model
- Model random perturbations in center
- Expected to get get spirals or concentric waves around center

- Grid spacing too large
- Laplacian package
- Initial Conditions

- Finite Difference Method
- Simpler elements (cartesian grid)
- These finite differences are substituted for derivatives in

the original equation
- Transforming PDE into a collection of algebraic equations

Li, B.-W., Xiao, J., Li, T.-C., Panfilov, A. V., & Dierckx, H. (2024). 
Self‑organized target wave chimeras in reaction‑diffusion media. Physical 
Review Letters, 133(20). https://doi.org/10.1103/PhysRevLett.133.207203



Finite Element for Wave Chimeras
In reaction Diffusion

- Bubbles come from initial conditions
- Random, gaussian bumps
- Local Oscillator out of phase with surroundings

- Sharp line indicates discontinuity
- Phase discontinuity

Li, Bing-Wei & Dierckx, Hans. (2015). Spiral wave 
chimeras in locally coupled oscillator systems. Physical 
Review E. 93. 10.1103/PhysRevE.93.020202.



Initial Conditions and the Complex Ginzburg-Landau Eq.
- Existing research often does not 

describe what initial conditions are 
needed to obtain particular patterns.

- Common initial conditions (IC) vary 
between fine noise and ones seeding

- Studying how changing these IC affects 
pattern formation can allow targeted 
choice of IC to produce specific 
patterns

- In the 𝛼=1, 𝛽∊[-5,5] regime, I 
investigated how varying IC noise grain 
affected pattern formation.



Pattern Formation in the Complex Ginzburg-Landau Eq.
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Pattern Formation in the Complex Ginzburg-Landau Eq.
- IC noise was formed by adding 20 sin 

terms with wavelengths sampled from 
the uniform range [𝜆min,𝜆max], with 
random phase offsets.

- The noise grain was characterized by 
𝜆min. Neumann BC and a square 100x100 
grid were used, with dx=0.5 and dt=0.04.

- I observed patterns being largely 
independent of noise grain in the -5
≤𝛽≤-0.5 and 𝛽=5 regimes, but strong 
dependence in the 0.5≤𝛽≤4 regime.


