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BACKGROUND AND DEFINITIONS

Let f : R? — C. The Fourier transform of f is defined by

F(m) = JOO f(x) x(—mx)dx, VYmeR?.

where x(t) = e®™t)
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UNCERTAINTY PRINCIPLE: A THEORY OF TRADEOFF

DEFINITION (SUPPORT)

Let f : RY — C, then the support of f is supp (f) = {x € R : f(x) # 0}.
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UNCERTAINTY PRINCIPLE: A THEORY OF TRADEOFF

DEFINITION (SUPPORT)

Let f : RY — C, then the support of f is supp (f) = {x € R : f(x) # 0}.

THEOREM (CLASSICAL UNCERTAINTY PRINCIPLE)

Let f : R? — C be supported in a subset E < RY and let f be supported in a subset
S RY Then
|E]-|S] = ¢ >0,

where | - | is the d-dimensional Lebesgue measure.

FIGURE: Uncertainty Principle

source: https://brilliant.org/wiki/heisenberg-uncertainty-principle/

GGKNZ (UR) SAMPLING ON MANIFOLDS Avucust 10, 2025



REDEFINING LOCALIZATION

> However, the definition of support is too restrictive. Many functions of interest are
never exactly zero anywhere (i.e., Gaussians).
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REDEFINING LOCALIZATION

> However, the definition of support is too restrictive. Many functions of interest are
never exactly zero anywhere (i.e., Gaussians).

> So concentration can be seen as a relaxed version of support, and the following
definition will be used throughout the presentation in different settings.

DEFINITION (CONCENTRATION)

Let (X, u) be a measure space, and let E ¢ X. We say that f € LP(X, ) is
LP-concentrated on E at level € if

”f — ]-EfHLP(X) < GHfHU’(X)’ for some 0 < e < 1. (1)
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WHAT 1S A MANIFOLD?

An n-dimensional manifold is a topological space M such that each point p € M has a
neighborhood homeomorphic to an open subset of R".
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WHAT 1S A MANIFOLD?

An n-dimensional manifold is a topological space M such that each point p € M has a
neighborhood homeomorphic to an open subset of R".

> Locally Euclidean, but the global shape can be curved or twisted.
> Hausdorff Space: the points can be “separated” in the topology
» Charts: coordinate maps from pieces of M to R".

> Second Countable: there is a countable basis for the topology.

> Locally Euclidean: This means that V p € M there is some set open set U < M
where p € U and open U < R" such that x: U — U is a homeomorphism.

> Examples: R", sphere S", torus T".
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TANGENT SPACE IN R”

A derivation, v, at a point p € M, is a linear function which assigns each smooth
function on M to a real number in R in such a way that the product rule holds

(v(fg) = f(p)v(g) + g(p)v(f)). The set of all such derivations is the Tangent Space,
T,M. This captures the idea of tangent vectors to a manifold.
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TANGENT SPACE IN FURTHER EXAMPLES

In the case of surfaces from R? to R? dealt with in the examples later, there is an easier
interpretation. Take some point p € M, w € R? , and some chart covering that point

x : U — U where x(q) = p. Then take some curve a : (—¢,¢) — M such that «(0) = q
and o/(0) = v. Then, define dx,(w) := (xo a)’'(0). Then the tangent space is at a point
p is given by T,M := dx,(R?).

FIGURE: Showing how vectors are “pushed forward” from R? to R3
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FroM MANIFOLD TO RIEMANNIAN MANIFOLD

A Riemannian manifold (M, g) is a manifold equipped with a smoothly varying inner
product g, on each tangent space T, M.

In further examples, the surfaces we deal with all have the property that, given the chart
x(u, v) that x, and x, are linearly independent and form a basis for the tangent space.
Since the inner product is a bilinear form, this has a symmetric matrix associated with it
given by:

[<xu,xu> <xu,xv>]
T xy o

Evaluated such that x(u, v) = p.
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FroM MANIFOLD TO RIEMANNIAN MANIFOLD

A Riemannian manifold (M, g) is a manifold equipped with a smoothly varying inner
product g, on each tangent space T, M.

In further examples, the surfaces we deal with all have the property that, given the chart
x(u, v) that x, and x, are linearly independent and form a basis for the tangent space.
Since the inner product is a bilinear form, this has a symmetric matrix associated with it
given by:

[<xu,xu> <xu,xv>]
T xy o

Evaluated such that x(u, v) = p.

> g lets us measure lengths, angles, and volumes.
> Examples:

> S2 with the round metric.

» Flat torus T? = R?/Z? with Euclidean metric.

> With g, we can define the Laplace—Beltrami operator.
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LAPLACE-BELTRAMI OPERATOR

Let (M, g) be a compact Riemannian manifold without boundary. The
Laplace—Beltrami operator is

Agf = gl 0, (lel " oif )

where (g7) is the inverse matrix and |g| its determinant.

» Self-adjoint and negative-definite on L*(M).

> Eigenfunctions e; satisfy Agej = —Xe;.
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EIGENVALUES, EIGENSPACES, AND MULTIPLICITY

> For each eigenvalue )\, the eigenspace
E,\:{ej:)\j:)\}

has dimension #{j : \j = A} (the multiplicity of X).

» {e;} can be chosen orthonormal in L*(M):
| a0t dvi o) = o
M

> The pointwise sum

S\ = D) lg)l?

JiAj=A

measures the total “energy density” of that eigenspace at x.

GGKNZ (UR) "LING ON MANIFOLDS

Avucust 10, 2025



UNCERTAINTY PRINCIPLE FOR COMPACT MANIFOLDS WITHOUT

BOUNDARY

Let S be a finite subset of the set of eigenvalues of \/—Ag. Let Xs = {j : \j € S}.
Suppose that f € L>(M) is not identically zero and that f is L*>-concentrated in E ¢ M
at level L with respect to the Riemannian volume density. Suppose also that fis
L2-concentrated on Xs at level L' with respect to the counting measure.

Then .
1 1 AR |E|- #Xs
(Be D mfere) a2

JEXs
where
L=(1-&)"" and L' =@1-€>)7Y2
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THE MAIN EQUATION

MAIN EQUATION

For each eigenvalue A,

Z le(x)?=c ae xeM,

Ji A=A

with ¢ independent of x.

This, thus will lead to the following relation:

Fiaes AeS} |E|f'f =

Combined with the aforementioned theorem, we get an alternative version of the
uncertainty principle below:

ALTERED UNCERTAINTY PRINCIPLE
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STARTING SMALL: FAMILIES OF SURFACES

> Our goal is to understand when the constant-sum property

Sxa(x) = Z lej(x)|> is constant in x
Ji X =A

holds.
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STARTING SMALL: FAMILIES OF SURFACES

> Our goal is to understand when the constant-sum property

Sxa(x) = Z lej(x)|> is constant in x

Ji A=A
holds.
> Rather than start with a general manifold, we first explore simple, symmetric
surfaces:
* Flat torus T2.
> Sphere S2.

> Spheroids.
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EXPERIMENTAL CHECK PLAN

@ Choose a surface.

@ Compute [2-normalized eigenfunctions for a fixed eigenvalue.

Q Evaluate 3, A=A lej(x)|* on a grid for some fixed \.

@ Test if the range is constant.
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Torus: S_lambda(x,y), m~2+n~2=5
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PERIMEN
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Range of 5(6)

Deviation of spectral sum vs. spheroid eccentricity
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FIGURE: Sum over a spheroid
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RESuULT

We conjecture that
Z le(x))?=c ae xeM,

JtAj=A

For this family of surfaces as we see that we stay somewhat constant throughout these
three surfaces, but more data testing for other surfaces is needed before proving this
conjecture.
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