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BACKGROUND AND DEFINITIONS

Let f : Zny — C. The Fourier transform of f is defined by

F(m) = ﬁ S F(x)x(—xm)

where x(t) = exp (35).
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Let f : Zny — C. The Fourier transform of f is defined by

where x(t) = exp (35).
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BACKGROUND AND DEFINITIONS

Let f : Zny — C. The Fourier transform of f is defined by

27rit)'

where x(t) = exp (%3

f) = 7% M F(m)x(xm), and Y [Fx)P = Y [FP

Given g : Zy — C, we define the LP norms

1 1

I8ire0 = (Al, > g<x>|">p, lels = (Z |g<x>|")p, and Il = max|g(x)].

XEZLN XEZLN
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TALAGRAND’S THEOREM

> We want to understand random, or “unstructured” sets, so we make the following
definition:

Let 0 < p < 1. Then, a random set S < [n] = {0,1,--- ,n— 1} is generic if each element
of [n] is selected independently with probability p.
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TALAGRAND’S THEOREM

> We want to understand random, or “unstructured” sets, so we make the following
definition:

Let 0 < p < 1. Then, a random set S < [n] = {0,1,--- ,n— 1} is generic if each element
of [n] is selected independently with probability p.

> The following result due to Bourgain and Talagrand describes the behavior of
generic sets.

THEOREM (BOURGAIN AND TALAGRAND, 1998)

There exists o € (0,1) such that if h: Zny — C supported in a generic set M of size
’Yoﬁ, then with probability 1 — on(1),

1

(Al, > |E<m>2> < Cr(log(N) loglog(N)* - > > [A(m), (1)

meZy meZy

where C7 > 0 is a constant that depends only on ~o.
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BOURGAIN’S THEOREM

> Similarly, we have the following theorem due to Bourgain:

THEOREM (BOURGAIN, 1989)

Suppose that M is generic with |M| = [N%] q > 2. Then with high probability, for all
h: Zn — C supported in M,

(Al, 5 E<m>|">q < Clo)- (,{, 5 Wm)f)

meZy meZy
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BOURGAIN’S THEOREM

> Similarly, we have the following theorem due to Bourgain:

THEOREM (BOURGAIN, 1989)

Suppose that M is generic with |M| = [N%] g > 2. Then with high probability, for all
h: Zn — C supported in M,
1 1

(Al, 5 E<m>|">q < Clo)- (,{, 5 Wm)f)

meZy meZy

> An application of Holder's inequality to the above theorem shows that if
M| = O(N'~¢), then Talagrand's inequality holds without the logarithms:

COROLLARY

|

If M is generic with M| = [Na], q > 2, then with high probability, for all h: Zy — C
supported in M,

1

(,lv > |E<x>|2) <(C@)T - 5 3 Al

XELN XELN
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NUMERICAL EXPERIMENTS

> First, we experimentally estimate the constants Ct and C(q).
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NUMERICAL EXPERIMENTS

> First, we experimentally estimate the constants Ct and C(q).

> For generic M of size O(N%) (g = 2), Talagrand’s theorem states that for h

supported in M, R R
[Al2eny < Crllhllirgy,

while Bourgain's theorem states

hllagny < C(@) A2
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NUMERICAL EXPERIMENTS

> First, we experimentally estimate the constants Ct and C(q).

> For generic M of size O(N%) (g = 2), Talagrand’s theorem states that for h

supported in M, R R
[Al2eny < Crllhllirgy,

while Bourgain's theorem states

[hllacny < C(@)lAl2u)-

> We saw also that Cr < C(q)7-2, so we estimate and compare these two quantities.
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NUMERICAL EXPERIMENT

> Looking at the values for C(q)ﬁ, we see it is roughly between 1.5 and 2.5:

C(4)~(2) vs N, 90th Percentile, Trials=1000 per N C(q)"(q/g-2) vs q, 90th percentile, Trials = 1000 per q
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> Next, looking at the values for Ct, we see it is smaller, roughly between 1 and 1.2:

C_T vs N, 90th Percentile, Trials=1000 per N,q=4

C_T vs g, 90th percentile, Trials = 1000 per g
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MOTIVATION

> From Bourgain and Talagrand, if the support of h is generic, then we have

h
HA”Ll(u) > 1 '
-
s Bl
This implies the ratio ——* is large.
Ihll2(,,
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MOTIVATION

> From Bourgain and Talagrand, if the support of h is generic, then we have

[l 2 1

727

[l 2, Cr

Al
—L£ ) s Jarge.

This implies the ratio —
Ihll2(,,

101,
Ihll,2,,

> Since Cr is close to 1, this suggests the ratio is close to 1 when h has

random support.
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MOTIVATION

> On the other hand, when N = pg and S is a subgroup of order p, we can show that
for h = 1s,

Il 2 _ 1
HhHLz(u) \/r)
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MOTIVATION

> On the other hand, when N = pg and S is a subgroup of order p, we can show that
for h = 1s,

Blogy 1
HhHLz(u) \/r)

> When p is large, this gives a small ratio, while when p is small, the ratio is close to 1.
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MOTIVATION

> On the other hand, when N = pg and S is a subgroup of order p, we can show that
for h = 1s,

Alagy 1
HhHLz(u) \/r)
> When p is large, this gives a small ratio, while when p is small, the ratio is close to 1.

> For p large, this suggests dense structured sets have small ratio, while sparse sets
have ratio close to 1.
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FOURIER RATIO BOUNDS

> By Cauchy-Schwartz,

1
2

5 2 1Fm) < (; > |f<m>2> :

meZy

170,10y

and thus — <
17120y
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FOURIER RATIO BOUNDS

> By Cauchy-Schwartz,

(Y
HETP
> Moreover, by Fourier inversion and the triangle inequality,

|f<x>|<\% S F(m),

meZy

and thus

I71
|1, so that ‘ALM > L.

1
and thus || f|2 < | e > Jn
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FOURIER RATIO BOUNDS

> By Cauchy-Schwartz,

(Y
HETP
> Moreover, by Fourier inversion and the triangle inequality,

|f<x>|<\% S F(m),

meZy

and thus

17111
1, s0 that -0 W 5 L

and thus | f]. < |f
172,09

DEFINITION (THE FOURIER RATIO)
We thus define

2
FR(f) = VAV 1260

(LA Ve

> We show that if FR(f) is small, f is structured.
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> We compute FR(f) for the following datasets:

Peyton Manning Wikipedia Visits

Electric Production

Delhi Daily Climate

[

100 200 300

Australia Monthly Beer Production

FIGURE: The four data sets.




COMPUTING FR(f) FOR STRUCTURED f

> We compute FR(f) for the following datasets:
The results are as follows:

Peyton Manning Wikipedia Visits Electric Production

» Peyton Manning Wikipedia Visits:
. . FR(f) = 1.917

: > Electric Production:

L FR(f) = 2.133
T e > Delhi Daily Climate:

N - FR(f) = 2.715

» Australia Monthly Beer Production:
L o L FR(F) = 2.884

Note these are all close to the minimal value

FIGURE: The four data sets. FR(f) -1
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COMPUTING FR(f) FOR RANDOM f

> Next we compute FR(f) when f(x) is randomly chosen according to various

10
2 50
08
N 0
-s0 06
o
100 o4
Y
150
02
-2 —-200
00
C 7 o vomaldaton 1533 LT T L I I
- Ratio for cauchy distribution: 16.37 Ratio for poisson distribution: 15.52

» Note that in all cases, FR(f) is close to v/N ~ 17.32




CONCENTRATION IMPLIES LARGE FR(f)

> Our first result shows that concentration in a random set is good enough to have
large FR(f).

Let f : Zy — C. Suppose that there exists a generic set M such that

[Fli2qmey < rlFl,

for some r € (0,1), with |M| < 'yoﬁ, where 7o is as in Talagrand’s theorem. Suppose
that

1—r
r< . (2)
Cr+/log(N) log log(N)
Then R
f _
I HLI(M < 1—r _, 3)

12,y Cr/log(N) log log(N)

with probability 1 — on(1).
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PROBABILISTIC POLYNOMIAL APPROXIMATION

> Next, we show that f can be approximated by a polynomial with degree depending
on FR(f).

Let f : Zy — C and n > 0. Then for any

there exists a trigonometric polynomial

P(x) = Z cix(mix)

such that
If — Pll2 < n[f]2.

> The proof is probabilistic, and shows that when FR(f) is small, f can be
approximated by a low degree polynomial.
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PROBABILISTIC POLYNOMIAL APPROXIMATION

. . N . i
> Similar methods also give an L approximation, now in terms of the ratio HfLH:(oH)

Let f : Zy — C and let n > 0. Then for any k such that

~ 2
- (le(m) Nlog(4N)

)

(g5 n?
there exists a trigonometric polynomial
K
P(x) = Y, cix(mix)
i=1

such that
If = Pllo < nlf|leo-

. . . I _1 ,
> Note that the triangle inequality shows HfL”l;f” > N™2, and so in the best case, the

above theorem gives a polynomial of degree O(log(N)).
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PROOF OF L2 APPROXIMATION

> Suppose f : Zy — C.

DEFINITION (RANDOM FUNCTION)

Define the random function Z : Zy — C, where for each m,

Z(x) = |Flusgn(F(m))N =2 x(mx)

with probability ‘?%’)‘, where sgn(z) = \él
1
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PROOF OF L2 APPROXIMATION

> Suppose f : Zy — C.

DEFINITION (RANDOM FUNCTION)

Define the random function Z : Zy — C, where for each m,
~ ~ _1
Z(x) = [f]1sgn(f(m))N~2x(mx)

with probability ‘?%’)‘, where sgn(z) = \él
1

> Note: We have that E[Z(x)] = f(x).
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PROOF OF L2 APPROXIMATION

> Suppose f : Zy — C.

DEFINITION (RANDOM FUNCTION)

Define the random function Z : Zy — C, where for each m,
~ ~ _1
Z(x) = [f]1sgn(f(m))N~2x(mx)

s (2) = i1

> Note: We have that E[Z(x)] = f(x).

> And,
f( R (m)]
m m
EZ)P = Y |IFl— bx(my)| LU
= Fm 17l
= LIl 3 [F(m
meZy
1 -~
= LIFE,
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PROOF OF e APPROXIMATION

» The Variance of Z(x) can be shown to be,

Var(Z(x)) = E|Z (" — [E[ZG0)1 = 7 = £GP
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PROOF OF e APPROXIMATION

» The Variance of Z(x) can be shown to be,

Var(Z(x)) = E|Z (" — [E[ZG0)1 = 7 = £GP

> Let Zi,...,Zx be random i.i.d. functions with distribution Z, and define the random
trigonometric polynomial P by

P(x) = %Z Z(x).

> By linearity of expectation,
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PROOF OF e APPROXIMATION

> Therefore, by independence

E|f = Pz = )} EIf(x) = P(x)I°

XELN
= Z Var(P(x))
XELN
1
= > Var(Z(x))
XELN
1 15
= 2 ylflE=1F P
XELy
1 712 2
= (1718 = 1713) -
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PROOF OF e APPROXIMATION

> Therefore, by independence

E|f = Pz = )} EIf(x) = P(x)I°

XELN
= Z Var(P(x))
XELN
1
= > Var(Z(x))
XELN
1 15
= 2 ylflE=1F P
XELy
1 712 2
= (1718 = 1713) -

> We finish with an assumption on the k value.
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PROOF OF e APPROXIMATION

» Now, if we assume this final value is less than 7| f||3, then there exists a
deterministic choice of P such that |f — P[> < n|f]2.
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PROOF OF e APPROXIMATION

» Now, if we assume this final value is less than 7| f||3, then there exists a
deterministic choice of P such that |f — P[> < n|f]2.

» This assumption on k amounts to

12 2
k> L 1A - I3
n |fH2

_1 (173
n? \ I3

_ 1 HfﬂLl(m
” HfHB(m
FR(f)* -1

7o
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PROOF OF e APPROXIMATION

» Now, if we assume this final value is less than 7| f||3, then there exists a
deterministic choice of P such that |f — P[> < n|f]2.

» This assumption on k amounts to

12 2
k> L 1A - I3
n |fH2

_1 (173
n? \ I3

_ 1 HfﬂLl(m
” HfHB(m
FR(f)* -1

7o

> and thus for any such k, there is a trigonometric polynomial P with
If -
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SPARSE-SPECTRUM APPROXIMATION
THEOREM (SPARSE-SPECTRUM APPROXIMATION FROM SMALL FR(f))

Let f : Zy — C, and fix n > 0. Define the large spectrum
Fi={mezn : [F(m) > nlfliagn}

Then
f(m)x(xm),

and moreover if
If — Pll2 < n[f]2.

FR(F) /i

then
In other words, f can be approximated by a polynomial of degree

AUGUST 9

FORECASTABILITY OF TIME-SERIES

up to an error < 1.
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PROOF OF SPARSE SPECTRUM APPROXIMATION

> Let I be defined as above. By our assumption on f as well as Markov's inequality
we have that

‘fHZ Z |f nufHLz(p,)lrL
meZy
» and thus if f is nonzero,
FR(f
Ir| ; JVN.
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PROOF OF SPARSE SPECTRUM APPROXIMATION

> Let I be defined as above. By our assumption on f as well as Markov's inequality

we have that
‘fHZ Z |f nufHLz(p,)lrL

meZy

» and thus if f is nonzero,

> Next, defining P as above, note that P is the inverse Fourier transform of f1r.
Additionally, for m ¢ ', we have that

|F(m)| <

[£12
2.

ABGIIKKLLMNS (UR) FOR BILITY OF T' AUGUST



PROOF OF SPARSE SPECTRUM APPROXIMATION

> Let I be defined as above. By our assumption on f as well as Markov's inequality
we have that

Alfla= > 1F(m)] = nlf]zqrl,
meZy
» and thus if f is nonzero,
FR(f
Ir| U)JN

> Next, defining P as above, note that P is the inverse Fourier transform of f1r.
Additionally, for m ¢ ', we have that

2 If12
f(m| <n—i-.
| ( )| n N%

> Thus, by Plancherel we have that
If = Pla = [[f = Pl
|F = Fir]2
1

(2 f<m>|2>
me¢l

< llfl2.
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CHANG’S LEMMA AND ADDITIVE STRUCTURE

Let A c Zn have density o = %, and for n > 0 define the large spectrum set
—~ 1
F={mezZy : [Ta(m)| = naN2}.

Then there exists N — I with

IA] < Cn?log (l)
a

such that every m e I is a {—1,0, 1}-linear combination of elements of A.
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CHANG’S LEMMA AND ADDITIVE STRUCTURE

Let A c Zn have density o = %, and for n > 0 define the large spectrum set
—~ 1
F={mezZy : [Ta(m)| = naN2}.

Then there exists N — I with

IA] < Cn?log (l)
a

such that every m e I is a {—1,0, 1}-linear combination of elements of A.

> This indicates that when « is small, the set ' should have some additive structure,
since it is spanned by a small set.
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CHANG’S LEMMA AND ADDITIVE STRUCTURE

THEOREM (GENERALIZED CHANG’S LEMMA)

Let f : Zny — C, and for n > 0 define the large spectrum set

r={mezn : [F(m)| = nlflagy} -

Then there exists N — [ with

(Ml '
INN<Cnp | —=— | loghN

I£12

2 |Ifllx 2%
A < Cn J Ll og ( N
A 7l 7l

such that every me I is a {—1,0,1}-linear combination of elements of A.

and

ABGIIKKLLMNS (UR) FORECASTABILITY OF TIME-SERIES AUGUST 9
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CHANG’S LEMMA AND ADDITIVE STRUCTURE

> Applying the previous theorem to f, we obtain
N < Co*FR(f) log (FR(f) *N) ,
where A is a set such that every
xel = {X EZn:|f(X)] = anHsz)}

is a {—1,0, 1}-linear combination of elements of A.
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CHANG’S LEMMA AND ADDITIVE STRUCTURE

> Applying the previous theorem to f, we obtain
IAl < Cn2FR(f) log (FR(f)’zN) ,
where A is a set such that every
xel = {X EZn:|f(X)] = anHsz)}

is a {—1,0, 1}-linear combination of elements of A.

> This suggests additive structure in the set I when FR(f) is small.
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PrROOF OF GENERALIZED CHANG’S LEMMA

> Let

> Take p > 2, and let p’ = Ll. Then

1]y €2y = 1l

1 =
> LY 0 Y Amn(—xn)
NH]'/\sz XELy r;\
1 o
= —F f(n) f(x)x(—xn)
NHl/\sz e xezzl,v
= 2 |f(n
NHl/\ng neA
= \fNﬂlAfH%
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PrROOF OF GENERALIZED CHANG’S LEMMA

» Recall that |f(m)| < n% for m € A. Since we are summing over |A| such terms,

VIAl

1 N
ﬁ\llAsz > nlfla~7

> This gives a lower bound on HfHLp/(H) l&llie(w)-

> Next, we will establish an upper bound.
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PrROOF OF GENERALIZED CHANG’S LEMMA

> By definition,
1_
Hf”Lp’(#) = N> IHpr"
» By Rudin’s inequality (see Lemma 4.33 in Tao-Vu), we also have

lglleoq < Cv/P

» Combining the our bounds yields

\/I | 1
nFl2 Y < Cy/pNE ]y,
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PrROOF OF GENERALIZED CHANG’S LEMMA

> Simplifying,

f /
VIA < Cp BN H" :
2

> Taking p = log(N)

115

IN| < Cn 2 log N——5,
113

> thus proving (4).
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PrROOF OF GENERALIZED CHANG’S LEMMA

> To prove (5) observe that

11
HfHLp’(H) = Ne ||y

> by Jensen's inequality.

ABGIIKKLLMNS (UR)
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p

= N5 (Ifll Z
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L

2 1F)
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X€ELy
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PrROOF OF GENERALIZED CHANG’S LEMMA

> This implies
1_ f
1l < N3 IFIL7 (H)

iRk
;7 P
NE (W)

> Again combining with our previous bounds,

1IN < et (””‘2)

I£1
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PrROOF OF GENERALIZED CHANG’S LEMMA

> This simplifies to

1
(BN I
Al < Cpt p(H—N =
N VPUREY) 17

If13 )
p= Iog( ,
1112

o (BN IF
Al < Cnp?log (H—N ,
A GRALGE

and this proves (5). O

> Now, taking

we obtain

ABGIIKKLLMNS (UR) TABILITY OF TIM



CONCLUSIONS

> Numerical experiments show FR(f) indicates structure, and also show the constants
in Bourgain and Talagrand are small.

» We can approximate f by a trig polynomial of lower degree (L? and L®
approximation theorems)

> Looking at the large Fourier Coeffs for approx gives a deterministic low degree
polynomial. (Sparse Spectrum Theorem)

> We hope to use the above approximation results to show that the collection
Hm = {f :Zn — C| FR(f) < M}

has small statistical dimension.
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