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Background and Definitions

Definition

Let f : ZN Ñ C. The Fourier transform of f is defined by

pf pmq “
1

?
N

ÿ

xPZN

f pxqχp´xmq

where χptq “ exp
`

2πit
N

˘

.

Remark (Fourier Inversion and Plancherel)

We have

f pxq “
1

?
N

ÿ

xPZN

pf pmqχpxmq, and
ÿ

xPZN

|f pxq|
2

“
ÿ

mPZN

|pf pxq|
2.

Definition

Given g : ZN Ñ C, we define the Lp norms

}g}Lppµq “

˜

1

N

ÿ

xPZN

|gpxq|
p

¸ 1
p

, }g}p “

˜

ÿ

xPZN

|gpxq|
p

¸ 1
p

, and }g}8 “ max
xPZN

|gpxq|.
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Talagrand’s Theorem

§ We want to understand random, or “unstructured” sets, so we make the following
definition:

Definition

Let 0 ă p ă 1. Then, a random set S Ă rns “ t0, 1, ¨ ¨ ¨ , n ´ 1u is generic if each element
of rns is selected independently with probability p.

§ The following result due to Bourgain and Talagrand describes the behavior of
generic sets.

Theorem (Bourgain and Talagrand, 1998)

There exists γ0 P p0, 1q such that if h : ZN Ñ C supported in a generic set M of size
γ0

N
logpNq

, then with probability 1 ´ oNp1q,

˜

1

N

ÿ

mPZN

|phpmq|
2

¸ 1
2

ď CT plogpNq log logpNqq
1
2 ¨

1

N

ÿ

mPZN

|phpmq|, (1)

where CT ą 0 is a constant that depends only on γ0.
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Bourgain’s Theorem

§ Similarly, we have the following theorem due to Bourgain:

Theorem (Bourgain, 1989)

Suppose that M is generic with |M| “ rN
2
q s, q ą 2. Then with high probability, for all

h : ZN Ñ C supported in M,

˜

1

N

ÿ

mPZN

|phpmq|
q

¸ 1
q

ď Cpqq ¨

˜

1

N

ÿ

mPZN

|phpmq|
2

¸ 1
2

§ An application of Hölder’s inequality to the above theorem shows that if
|M| “ OpN1´ϵ

q, then Talagrand’s inequality holds without the logarithms:

Corollary

If M is generic with |M| “ rN
2
q s, q ą 2, then with high probability, for all h : ZN Ñ C

supported in M,

˜

1

N

ÿ

xPZN

|phpxq|
2

¸ 1
2

ď pCpqqq
q

q´2 ¨
1

N

ÿ

xPZN

|phpxq|.
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Numerical Experiments

§ First, we experimentally estimate the constants CT and Cpqq.

§ For generic M of size OpN
2
q q (q ě 2), Talagrand’s theorem states that for h

supported in M,
}ph}L2pµq ď CT }ph}L1pµq,

while Bourgain’s theorem states

}ph}Lqpµq ď Cpqq}ph}L2pµq.

§ We saw also that CT ď Cpqq
q

q´2 , so we estimate and compare these two quantities.
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Numerical Experiments

§ Looking at the values for Cpqq
q

q´2 , we see it is roughly between 1.5 and 2.5:
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Numerical Experiments

§ Next, looking at the values for CT , we see it is smaller, roughly between 1 and 1.2:
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Talagrand’s Constant
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Motivation

§ From Bourgain and Talagrand, if the support of h is generic, then we have

}ph}L1pµq

}ph}L2pµq

ě
1

CT
.

This implies the ratio
}ph}

L1pµq

}ph}
L2pµq

is large.

§ Since CT is close to 1, this suggests the ratio
}ph}

L1pµq

}ph}
L2pµq

is close to 1 when h has

random support.
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Motivation

§ On the other hand, when N “ pq and S is a subgroup of order p, we can show that
for h “ 1S ,

}ph}L1pµq

}ph}L2pµq

“
1

?
p
.

§ When p is large, this gives a small ratio, while when p is small, the ratio is close to 1.

§ For p large, this suggests dense structured sets have small ratio, while sparse sets
have ratio close to 1.
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Fourier Ratio Bounds

§ By Cauchy-Schwartz,

1

N

ÿ

mPZN

|pf pmq| ď

˜

1

N

ÿ

mPZN

|pf pmq|
2

¸ 1
2

,

and thus
}pf }

L1pµq

}pf }
L2pµq

ď 1.

§ Moreover, by Fourier inversion and the triangle inequality,

|f pxq| ď
1

?
N

ÿ

mPZN

|pf pmq|,

and thus }f }2 ď }pf }1, so that
}pf }

L1pµq

}pf }
L2pµq

ě 1?
N
.

Definition (The Fourier Ratio)

We thus define

FRpf q “
?
N ¨

}pf }L1pµq

}pf }L2pµq

.

§ We show that if FRpf q is small, f is structured.
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Computing FRpf q for structured f

§ We compute FRpf q for the following datasets:

Figure: The four data sets.

The results are as follows:

§ Peyton Manning Wikipedia Visits:

FRpf q “ 1.917

§ Electric Production:

FRpf q “ 2.133

§ Delhi Daily Climate:

FRpf q “ 2.715

§ Australia Monthly Beer Production:

FRpf q “ 2.884

Note these are all close to the minimal value
FRpf q “ 1.
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Computing FRpf q for random f

§ Next we compute FRpf q when f pxq is randomly chosen according to various
distributions:

§ Note that in all cases, FRpf q is close to
?
N « 17.32
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Concentration implies large FRpf q

§ Our first result shows that concentration in a random set is good enough to have
large FRpf q.

Theorem

Let f : ZN Ñ C. Suppose that there exists a generic set M such that

}f }L2pMc q
ď r}f }2

for some r P p0, 1q, with |M| ď γ0
N

logpNq
, where γ0 is as in Talagrand’s theorem. Suppose

that

r ă
1 ´ r

CT

a

logpNq log logpNq
. (2)

Then
}pf }L1pµq

}pf }L2pµq

ě
1 ´ r

CT

a

logpNq log logpNq
´ r (3)

with probability 1 ´ oNp1q.
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Probabilistic Polynomial Approximation

§ Next, we show that f can be approximated by a polynomial with degree depending
on FRpf q.

Theorem

Let f : ZN Ñ C and η ą 0. Then for any

k ą
FRpf q

2
´ 1

η2
,

there exists a trigonometric polynomial

Ppxq “

k
ÿ

i“1

ciχpmixq

such that
}f ´ P}2 ă η}f }2.

§ The proof is probabilistic, and shows that when FRpf q is small, f can be
approximated by a low degree polynomial.
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Probabilistic Polynomial Approximation

§ Similar methods also give an L8 approximation, now in terms of the ratio
}pf }

L1pµq

}f }8

Theorem

Let f : ZN Ñ C and let η ą 0. Then for any k such that

k ą 8

˜

}pf }L1pµq

}f }8

¸2
N logp4Nq

η2
,

there exists a trigonometric polynomial

Ppxq “

k
ÿ

i“1

ciχpmixq

such that
}f ´ P}8 ă η}f }8.

§ Note that the triangle inequality shows
}pf }

L1pµq

}f }8
ě N´ 1

2 , and so in the best case, the

above theorem gives a polynomial of degree OplogpNqq.
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Proof of L2 Approximation

§ Suppose f : ZN Ñ C.

Definition (Random Function)

Define the random function Z : ZN Ñ C, where for each m,

Zpxq “ }pf }1 sgnppf pmqqN´ 1
2χpmxq

with probability |pf pmq|

}pf }1
, where sgnpzq “ z

|z|
.

§ Note: We have that ErZpxqs “ f pxq.

§ And,

E|Zpxq|
2

“
ÿ

mPZN

ˇ

ˇ

ˇ

ˇ

ˇ

}pf }1
pf pmq

|pf pmq|
N´ 1

2χpmxq

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨
|pf pmq|

}pf }1

“
1

N
}pf }1

ÿ

mPZN

|pf pmq|

“
1

N
}pf }

2
1,
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Proof of L2 Approximation

§ The Variance of Zpxq can be shown to be,

VarpZpxqq “ E|Zpxq|
2

´ |ErZpxqs|
2

“
1

N
}pf }

2
1 ´ |f pxq|

2.

§ Let Z1, . . . ,Zk be random i.i.d. functions with distribution Z , and define the random
trigonometric polynomial P by

Ppxq “
1

k

k
ÿ

i“1

Zi pxq.

§ By linearity of expectation,

ErPpxqs “ ErZpxqs “ f pxq
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Proof of L2 Approximation

§ Therefore, by independence

E}f ´ P}
2
2 “

ÿ

xPZN

E|f pxq ´ Ppxq|
2

“
ÿ

xPZN

VarpPpxqq

“
1

k

ÿ

xPZN

VarpZpxqq

“
1

k

ÿ

xPZN

1

N
}pf }

2
1 ´ |f pxq|

2

“
1

k

´

}pf }
2
1 ´ }f }

2
2

¯

.

§ We finish with an assumption on the k value.
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Proof of L2 Approximation

§ Now, if we assume this final value is less than η2
}f }

2
2, then there exists a

deterministic choice of P such that }f ´ P}2 ă η}f }2.

§ This assumption on k amounts to

k ą
1

η2
¨

}pf }
2
1 ´ }f }

2
2

}f }22

“
1

η2

˜

}pf }
2
1

}f }22
´ 1

¸

“
1

η2

¨

˝N

˜

}pf }L1pµq

}pf }L2pµq

¸2

´ 1

˛

‚

“
FRpf q

2
´ 1

η2
,

§ and thus for any such k, there is a trigonometric polynomial P with
}f ´ P}2 ă η}f }2, and we are done.
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˛

‚

“
FRpf q

2
´ 1

η2
,

§ and thus for any such k, there is a trigonometric polynomial P with
}f ´ P}2 ă η}f }2, and we are done.
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Sparse-Spectrum Approximation

Theorem (Sparse-spectrum approximation from small FRpf q)

Let f : ZN Ñ C, and fix η ą 0. Define the large spectrum

Γ :“
!

m P ZN : |pf pmq| ě η}f }L2pµq

)

.

Then

|Γ| ď
FRpf q

η

?
N,

and moreover if

Ppxq :“
1

N
1
2

ÿ

mPΓ

pf pmqχpxmq,

then
}f ´ P}2 ď η}f }2.

In other words, f can be approximated by a polynomial of degree

FRpf q

η
¨

?
N

up to an error ď η.
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Proof of Sparse Spectrum Approximation

§ Let Γ be defined as above. By our assumption on f as well as Markov’s inequality
we have that

FRpf q}f }2 ě
ÿ

mPZN

|pf pmq| ě η}f }L2pµq|Γ|,

§ and thus if f is nonzero,

|Γ| ď
FRpf q

η

?
N.

§ Next, defining P as above, note that P is the inverse Fourier transform of pf ¨ 1Γ.
Additionally, for m R Γ, we have that

|pf pmq| ă η
}f }2

N
1
2

.

§ Thus, by Plancherel we have that

}f ´ P}2 “ }pf ´ pP}2

“ }pf ´ pf 1Γ}2

“

˜

ÿ

mRΓ

|pf pmq|
2

¸ 1
2

ď η}f }2.
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Chang’s Lemma and Additive Structure

Lemma (Chang’s lemma)

Let A Ă ZN have density α “
|A|

N
, and for η ą 0 define the large spectrum set

Γ “

!

m P ZN : |x1Apmq| ě ηαN
1
2

)

.

Then there exists Λ Ă Γ with

|Λ| ď Cη´2 log

ˆ

1

α

˙

such that every m P Γ is a t´1, 0, 1u-linear combination of elements of Λ.

§ This indicates that when α is small, the set Γ should have some additive structure,
since it is spanned by a small set.
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Chang’s Lemma and Additive Structure

Theorem (Generalized Chang’s Lemma)

Let f : ZN Ñ C, and for η ą 0 define the large spectrum set

Γ “

!

m P ZN : |f̂ pmq| ě η}f }L2pµq

)

.

Then there exists Λ Ă Γ with

|Λ| ď Cη´2

˜

}f } log N
log N´1

}f }2

¸2

logN (4)

and

|Λ| ď Cη´2 }f }1

}f }2
log

˜

ˆ

}f }2

}f }1

˙2

N

¸

(5)

such that every m P Γ is a t´1, 0, 1u-linear combination of elements of Λ.
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Chang’s Lemma and Additive Structure

§ Applying the previous theorem to f̂ , we obtain

|Λ| ď Cη´2FRpf q log
´

FRpf q
´2N

¯

,

where Λ is a set such that every

x P Γ –
␣

x P ZN : |f pxq| ě η}f }L2pµq

(

is a t´1, 0, 1u-linear combination of elements of Λ.

§ This suggests additive structure in the set Γ when FRpf q is small.
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Proof of Generalized Chang’s Lemma

§ Let

gpxq “
1

}1Λ f̂ }2

ÿ

nPΛ

f̂ pnqχpxnq,

§ Take p ą 2, and let p1
“

p
p´1

. Then

}f }Lp1
pµq

}g}Lppµq ě }fg}L1pµq

ě
1

N}1Λ f̂ }2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPZN

f pxq
ÿ

nPΛ

f̂ pnqχp´xnq

ˇ

ˇ

ˇ

ˇ

ˇ

“
1

N}1Λ f̂ }2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nPΛ

f̂ pnq
ÿ

xPZN

f pxqχp´xnq

ˇ

ˇ

ˇ

ˇ

ˇ

“

?
N

N}1Λ f̂ }2

ÿ

nPΛ

|f̂ pnq|
2

“
1

?
N

}1Λ f̂ }2.
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Proof of Generalized Chang’s Lemma

§ Recall that |f̂ pmq| ď η }f }2
N

for m P Λ. Since we are summing over |Λ| such terms,

1
?
N

}1Λ f̂ }2 ě η}f }2

a

|Λ|

N

§ This gives a lower bound on }f }Lp1
pµq

}g}Lppµq.

§ Next, we will establish an upper bound.
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Proof of Generalized Chang’s Lemma

§ By definition,

}f }Lp1
pµq

“ N
1
p

´1
}f }p1 .

§ By Rudin’s inequality (see Lemma 4.33 in Tao-Vu), we also have

}g}Lppµq ď C
?
p

§ Combining the our bounds yields

η}f }2

a

|Λ|

N
ď C

?
pN

1
p

´1
}f }p1 ,
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Proof of Generalized Chang’s Lemma

§ Simplifying,

a

|Λ| ď Cη´1?
pN

1
p

}f }p1

}f }2
.

§ Taking p “ logpNq

|Λ| ď Cη´2 logN
}f }

2
p1

}f }22
,

§ thus proving p4q.
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Proof of Generalized Chang’s Lemma

§ To prove p5q observe that

}f }Lp1
pµq

“ N
1
p

´1
}f }p1

“ N
1
p

´1

˜

ÿ

xPZN

|f pxq|
p

p´1

¸

p´1
p

“ N
1
p

´1

˜

}f }1

ÿ

xPZN

|f pxq|

}f }1
|f pxq|

1
p´1

¸

p´1
p

ď N
1
p

´1

¨

˝}f }1

˜

ÿ

xPZN

|f pxq|

}f }1
|f pxq|

¸ 1
p´1

˛

‚

p´1
p

§ by Jensen’s inequality.
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Proof of Generalized Chang’s Lemma

§ This implies

}f }Lp1
pµq

ď N
1
p

´1
}f }

p´1
p

1

ˆ

}f }
2
2

}f }1

˙

1
p

“ N
1
p

´1
}f }1

ˆ

}f }2

}f }1

˙ 2
p

.

§ Again combining with our previous bounds,

η}f }2

a

|Λ|

N
ď C

?
pN

1
p

´1
}f }1

ˆ

}f }2

}f }1

˙ 2
p

.
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Proof of Generalized Chang’s Lemma

§ This simplifies to

a

|Λ| ď Cη´1?
p

ˆ

}f }
2
2

}f }21
N

˙

1
p }f }1

}f }2
.

§ Now, taking

p “ log

ˆ

}f }
2
2

}f }21
N

˙

,

we obtain

|Λ| ď Cη´2 log

ˆ

}f }
2
2

}f }21
N

˙

}f }1

}f }2
,

and this proves (5).
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Conclusions

§ Numerical experiments show FRpf q indicates structure, and also show the constants
in Bourgain and Talagrand are small.

§ We can approximate f by a trig polynomial of lower degree (L2 and L8

approximation theorems)

§ Looking at the large Fourier Coeffs for approx gives a deterministic low degree
polynomial. (Sparse Spectrum Theorem)

§ We hope to use the above approximation results to show that the collection

HM “ tf : ZN Ñ C | FRpf q ď Mu

has small statistical dimension.
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