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Background

Figure: Raw data from a seizure period in the CHB-MIT Database

Seizures

§ Sustained abnormal electrical activity (ě 7 seconds)

§ Pediatric epilepsy affects 1 in 100 children.

§ Diagnosed by visual inspection of brain waves by a clinician

§ Automating seizure classification: area of ongoing research
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Background

Difficulties of detecting seizures in EEG data

§ Seizures are rare (limited training data)
§ Size of raw EEG data

§ EEG sampling rate: fs “ 256 samples per second
§ EEG electrode count: d “ 23 electrodes
§ Result: 1 minute of data is in Rdˆn, n “ 60 ˚ fs “ 15360 samples.
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Background

Difficulties of detecting seizures in EEG data

§ Seizures are rare (limited training data)
§ Size of raw EEG data

§ EEG sampling rate: fs “ 256 samples per second
§ EEG electrode count: d “ 23 electrodes
§ Result: 1 minute of data is in Rdˆn, n “ 60 ˚ fs “ 15360 samples.

Key question: How can we exploit the distinct mathematical structure of seizure
brainwaves to perform dimension reduction on EEG data?
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Past Work on Seizure Detection

Past approaches to Seizure Classification in the Literature

Gotman et. al. (1982)[1] and Shoeb et. al. (2010)[2]
§ Classifying seizures using limited bandwidth of 0 - 30 Hz Fourier components of

EEG data
§ Earliest seizure detecion algorithms
§ Focus on only biologically relevant frequencies

5/22



Past Work on Seizure Detection

Past approaches to Seizure Classification in the Literature

Gotman et. al. (1982)[1] and Shoeb et. al. (2010)[2]
§ Classifying seizures using limited bandwidth of 0 - 30 Hz Fourier components of

EEG data
§ Earliest seizure detection algorithms

Namazi et. al. (2015)[3]
§ Classifying seizures using the Hurst exponent

§ EEG data might have higher fractal dimension during seizures

6/22



Past Work on Seizure Detection

Definition

The discrete s-energy of a finite dataset txku
n
k“1 Ă Rd for parameter s ą 0 is defined by

Is ptxku
n
k“1q “
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n
ÿ
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j‰i

|xi ´ xj |
´s

where |.| denotes the Euclidean norm on Rd .

StemForAll 2024

§ Discrete energy Ñ estimate EEG fractal dimension

§ Feedforward neural network trained on discrete energy differences: 86.79% test
accuracy
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StemForAll 2025 Results Outline

Compare three approaches to classifying seizures from EEG data in pediatric epilepsy
patients using models trained on:

§ Full raw EEG recording (R23ˆn)
§ Biologically relevant (0-30Hz) frequency component time series

§ Compress further using Principal Components Analysis

§ Discrete energy time series (R
n

256 )
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The Dataset

Children’s Hospital Boston MIT Scalp Electroencephalogram Data (CHB-MIT) Database

Figure: Raw data from a seizure period in the CHB-MIT Database

Patient Demographics

§ 23 pediatric patients
§ Ages 1.5 - 22 years

§ 4 patients had age ď 3
§ Neonatal seizures were excluded
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Classifying Seizures using Raw EEG Data

§§ Model: Long Short-Term Memory (LSTM)

§ Dataset: 1 EEG file (23 channels) from each patient

§ Excluding: patients under 4 years old, and seizures shorter than 7 seconds

Non-Seizure (100s) Seizure Non-Seizure (100s)

1-min window Sliding windows for collecting training dataset

§ Test accuracy: 87%

§ Limitation: only 1 EEG file from each patient is used for training due to limitation of
computers, so it might not be generalizable to other EEG files.
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Fourier Transform of EEG Data

§ Applied Fourier Transform to convert raw EEG data from the time domain to the
frequency domain.

§ Observation: For both seizure and non-seizure plots, most of the signal power is
concentrated in the 0–30 Hz range.

§ Conclusion: Focus on low frequencies.

Figure: FFT magnitude spectrum for seizure (red) and non-seizure (blue) EEG segments
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Fourier Series over Time

§ Applied Fourier Transform to EEGs using a 1-second sliding window, aligned with
seizure onset time.

§ Observation: In some patients, there is a clear rise of normalized Fourier transform
data during the seizure.

Figure: Normalized low-frequency Fourier transform over time.
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Classification using Fourier transform features

§ Goal: Use Fourier Transform features (0–30 Hz) to classify seizure vs. non-seizure
EEG segments.

§ Features: Low-frequency Fourier data across common channels, reduced by PCA
(n “ 7).

§ Classifier: Random Forest with balanced class weights.
§ Results:

§ Accuracy: 86.8%
§ Seizure class F1-score: 0.69
§ Non-seizure class F1-score: 0.92
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Reducing Dimensionality with Discrete Energy

Figure: Finding the discrete energy for each second of EEG readings. This process reduces the
dimension of the data by a great degree, since each data point produced will be the result of 256
time steps, each with 23 features
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Reducing Dimensionality with Discrete Energy

Figure: Discrete energy often drops during seizure periods (highlighted in red)
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LSTM Seizure Classification using Discrete Energy

§ Training dataset:
§ Datapoints in the seizure group: the discrete energy over time (calculated for each

second) during each full seizure period as well as a random buffer of timesteps before
and after the seizure

§ Datapoints in the non-seizure group: the discrete energy over time (calculated for
each second) for random periods of time that were not during seizures

§ Goal: to classify whether a given discrete energy time series contains a seizure
period or not
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Discrete Energy LSTM Performance

§ Model performance was tested with 5-fold cross validation
§ Classification performance:

§ Overall accuracy of 87%
§ Detected 90% of discrete energy time series with seizures and misclassified 16% of

non-seizure time series

§ Conclusion: despite the input data being reduced to a 1-dimensional time series
with 256 times fewer timesteps, enough information was retained that a model was
still able to predict the presence of seizures with relatively good accuracy
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Discrete Energy Integrals

Computing integrals of the Seizure Discrete Energy Plots

Figure: The discrete energy integral from patient 7 when s=1. Note apparent differences in
pre-ictal, post-ictal, and seizure integrals
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Comparison of Discrete Energy Integrals

Comparing Seizure Discrete Energy Integral Plots

Figure: Discrete energy integrals of 16 patients during pre-ictal, post-ictal, and seizure periods.
Note apparent decline in discrete energy during seizure periods.
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Comparing the Discrete Energy of Non-Epileptic and
Epileptic Patients

Non-Epileptic Discrete Energy Control Plot

Figure: Discrete energy plot of healthy, non-epileptic patient. Note apparent difference in
discrete energy range for healthy and epileptic patients.
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Classification Feedforward Neural Network

This feedforward neural network (FNN) uses 9 ratio-based features derived from discrete
energy integrals. The model was trained on standardized ratio features capturing relative
energy shifts between seizure states, enabling it to learn discriminative patterns. It uses a
simple 2-layer architecture trained with cross-entropy loss.

Figure: FNN accuracy and predicted classification. Class 0 is the seizure ratios, class 1 is the
pre-ictal ratios, class 2 is the post-ictal ratios, and class 3 is the no seizure ratios.
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Future Directions

§ Identifying start time of seizure (sliding window): the first interval being classified as
seizure is the start time

§ Investigating why some patients’ seizures do not show a decline in discrete energy
when setting the s parameter to 1, but do for higher values of s.

§ Creating a classification neural network that combines both discrete integrals and
differences to detect seizures.

§ Researching outliers such as neonatal seizure data further to see if we can draw
similar patterns/comparisons as we did for the pediatric data.
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Appendix - Fourier Ratio Analysis

§ Computed the ratio of the L1 norm to the L2 norm
of the fourier data (0–30 Hz).

§ Observation: Although seizure and non-seizure ratios
do not always show a large difference, the ratios
range from 0.45 to 0.75 across patients.

§ Conclusion: EEG time series are highly
nonforecastable. Further there is no clear correlation
between the relative degree of forecastability between
seizure and non-seizure time series
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Appendix - Changing the s parameter

Figure: The discrete s-energy of EEG 17 from patient 14 when s=1. Note apparent lack of
change during the seizure duration (highlighted in red)
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Appendix - Changing the s parameter

Figure: The discrete s-energy of EEG 17 from patient 14 when s=10. The sustained decrease in
energy during the seizure duration (highlighted in red) is now visible
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