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Classical imputation using trig polynomial regression

What if some values in our time series are lost? In the graph below, 100 of
the original 300 values have been randomly removed. The original missing
values are in red, and the imputed values are in black.
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Imputation using signal recovery methods

This time, the original missing values are in red, the trig regression values
in black, and the imputed values using signal recovery methods are in blue.
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Imputation using signal recovery methods

However, the question remains: how did we arrive at this graph and
the imputation method shown, and can it be improved?
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Signals and the Discrete Fourier Transform

Let f be a signal of finite length, i.e. f : ZN → C

Suppose that the Fourier transform of f is transmitted, where:

f̂ (m) = N− 1
2

∑
x∈ZN

χ(−x ·m)f (x); χ(t) = e
2πit
N

Fourier Inversion states that f can be recovered by:

f (x) = N− 1
2

∑
m∈ZN

χ(x ·m)f̂ (m)
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Exact Recovery Problem

Now, suppose that the values {f̂ (m)}m∈S are not observed.

Can f be recovered exactly from its discrete Fourier transform?

The answer is yes (under some conditions)!
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Exact Recovery

Let the support of a signal f be defined as

supp(f ) = {x ∈ ZN : f (x) ̸= 0}

Theorem (Matolcsi-Szucks/Donoho-Stark)

Let f : ZN → C be supported in E ⊂ ZN . Suppose that f̂ is transmitted
but the frequencies {f̂ (m)}m∈S are unobserved, where S ⊂ ZN . Then f
can be recovered exactly and uniquely if

|E | · |S | < N

2

.
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Logan’s Phenomenon and L1-Minimization Algorithm

Theorem

Let f : ZN → C be supported in E ⊂ ZN . Suppose that f̂ is transmitted
but the frequencies {f̂ (m)}m∈S are unobserved, where S ⊂ ZN , with
|E | · |S | < N

2 . Then f can be recovered exactly and uniquely. Moreover,

f = argming ||g ||L1(ZN)with the constraint f̂ (m) = ĝ(m),m /∈ S

Logan’s celebrated result is the cornerstone of our further work
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Shaping Logan to fit real-world data

Datasets and signals are generally noisy, so it is useful to modify the
constraint to allow small differences between g and f .

Additionally, when dealing with time series data, referring to the
support of a function is not practical. Rather, it is more realistic to
define a relationship between values that are relatively small
compared to the rest of the data set.

Definition

Let u : ZN → C. We say that u is Lp-concentrated on A ⊂ ZN with the
norm ≤ ϵ if

∥u∥Lp(Ac ) ≤
ϵ

N
· ∥u∥Lp(ZN)
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Previous Result

Theorem

Let f : ZN → C, and suppose that the values {f (x)}x∈M are unobserved,

where M is a generic subset of ZN , of size ≤ γ0
N

log(N) , where γ0 is as in
Talagrand’s Theorem. Let

g = argminu||û||1 : ||u − f ||L1(Mc ) ≤ δN−1||f ||L1(Mc ). (1)

Suppose that f̂ is ϵ-concentrated on S ⊂ ZN such that

|S | < 1

16C 2
T

N

log(N) log log(N)
. (2)

Let h = f − g. Then if h ̸= 0, then with probability 1− oN(1)

1

|M|
∑
x∈M

|h(x)| ≤ (4ϵ+ 5δ) · 1

N

∑
x∈ZN

|f (x)|. (3)
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Improved Result

Theorem (Improved)

Let f : ZN → C, and suppose that the values {f (x)}x∈M are unobserved,

where M is a generic subset of ZN , of size ≤ γ0
N

log(N) , where γ0 is as in
Talagrand’s Theorem. Let

g = argminu||û||1 : ||u − f ||L1(Mc ) ≤ δN−1||f ||L1(Mc ). (4)

Suppose that f̂ is ϵ-concentrated on S ⊂ ZN such that

|S | < 1

16C 2
T

N

log(N) log log(N)
. (5)

Let h = f − g. Then if h ̸= 0, then with probability 1− oN(1)

1

|M|
∑
x∈M

|h(x)| ≤
(
4ϵ

|S |
N − ϵ

+

(
4
|S |
N

+ 1

)
δ

)
· 1

N

∑
x∈ZN

|f (x)|. (6)
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Improved Result

The proof of our result uses the same framework as the previous
theorem, but makes two key improvements.

First, we improved the bound on ∥f̂ ∥1.
The previous bound was

∥f̂ ∥1 ≤ N
1
2 ∥f ∥1.

Our improved bound is

∥f̂ ∥1≤
|S |

N − ϵ
N

1
2 ∥f ∥1.
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Improved Result

Second, we improved the bound on ∥ĥ∥L1(S).
The previous bound was

∥ĥ∥L1(S) ≤ 5 ·
N

1
2 · δ · ∥f ∥L1(µ)

4
+

∥ĥ∥1
4

.

Our improved bound is

∥ĥ∥L1(S) ≤
(
1 + 4

|S |
N

)
·
N

1
2 · δ · ||f ||L1(µ)

4
+

∥ĥ∥1
4

.

Using these two improvements, we were able to create a tighter
bound in the final inequality.
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Numerical Experiments with L1-minimization

Throughout our numerical experiments, we found that applying the
L2 norm in the constraint was more effective for reducing error.

The graphs below compare the L1 optimizations where the line in red
represents the original missing values, the line in blue the L2

constraint, and line in green the L1 constraint.
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Result with L2 Norm

Theorem (Improved)

Let f : ZN → C, and suppose that the values {f (x)}x∈M are unobserved,

where M is a generic subset of ZN , of size ≤ γ0
N

log(N) , where γ0 is as in
Talagrand’s Theorem. Let

g = argminu||û||1 : ||u − f ||L2(Mc ) ≤ δN−1||f ||L2(Mc ). (7)

Suppose that f̂ is ϵ-concentrated on S ⊂ ZN such that

|S | < 1

16C 2
T

N

log(N) log log(N)
. (8)

Let h = f − g. Then if h ̸= 0, then with probability 1− oN(1)

1

|M|
∑
x∈M

|h(x)| ≤

(
4ϵ

|S |
N − ϵ

+

(
4

(
|S |
N

) 1
2

+ 1

)
δ

)
· 1

N

∑
x∈ZN

|f (x)|. (9)
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Experiments with Proportions

We also found that the “type” of data that is missing plays a large
role in how accurately it can be recovered.

In particular, removing the highest third of values resulted in
significantly more error than removing a random third of values,
suggesting this data has structure which is important for accurate
recovery.

The result is similar when the lowest values are removed (a lot more
error than random removal). However, there is less error when the
middle values are removed.
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Experiments with Proportions

The actual data is in red, and the imputed data is in green (L1

optimizer) and blue (L1ϵ optimizer).
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Experiments with Proportions

The graph below shows how error in recovery increases when the
proportion p of the data which is removed increases. The proportion
of values removed is on the x axis. The line in blue represents error
when the highest values are removed, and the line in red represents
errors when values are randomly chosen for removal.
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