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Classical imputation using trig polynomial regression

In the picture below, 150 of the 450 points in the original inflation
data set are randomly removed. The values are then filled in using the
trig polynomial regression. What you see is the graph of the original
missing points (red) and the imputed values (black).
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Imputation using the methods of exact signal recovery

This time, the original missing values are in red, the trig imputation is
in black and the method arising from the world of exact signal
recovery is in blue.
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The purpose of this talk

The purpose of this talk is to explain how simple ideas from Fourier
analysis can be used to build the ”blue” imputation mechanism above.
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Finite Signals and Discrete Fourier transform

Let f be a signal of finite length, i.e f : Zd
N → C.

Suppose that the Fourier transform of f is transmitted, where

f̂ (m) = N− d
2

∑
x∈Zd

N

χ(−x ·m)f (x); χ(t) = e
2πit
N .

Fourier Inversion says that we can recover the signal by using the
Fourier inversion:

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m).
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Exact recovery problem

The basic question is, can we recover f exactly from its discrete
Fourier transforms if {

f̂ (m) : m ∈ S
}

are unobserved (or missing due to noise, other interference, or
security), for some S ⊂ Zd

N?

The answer turns out to be YES if f is supported in E ⊂ Zd
N , and

|E | · |S | < Nd

2
,

with the main tool being the Fourier Uncertainty Principle.
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Fourier Inversion and Plancherel

Given f : Zd
N → C, we shall use the following two formulas repeatedly:

(Fourier Inversion)

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m),

and

(Plancherel) ∑
m∈Zd

N

|f̂ (m)|
2
=
∑
x∈Zd

N

|f (x)|2.
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A basic inequality

Using the triangle inequality, it is not difficult to see that

|f̂ (m)| ≤ N− d
2

∑
x∈Zd

N

|χ(−x ·m)f (x)|

≤ N− d
2

∑
x∈Zd

N

|f (x)|.

Similarly,

|f (x)| ≤ N− d
2 ·
∑
m∈Zd

N

|f̂ (m)|.
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An elementary point of view: setup

Suppose that E ⊂ Zd
N and f (x) = 1E (x), the indicator function of E .

Suppose that the Fourier transform E is transmitted, and the
frequencies in S ⊂ Zd

N are unobserved.

By Fourier Inversion,

1E (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)1̂E (m)

= N− d
2

∑
m/∈S

χ(x ·m)1̂E (m) + N− d
2

∑
m∈S

χ(x ·m)1̂E (m)

= I (x) + II (x).
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An elementary point of view: direct estimation

By the triangle inequality,

|II (x)| ≤ N− d
2 · |S | · N− d

2 · |E | = N−d · |E | · |S |.

Since we know nothing about S , the best we can do is hope that the
quantity above is small.
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An elementary point of view: rounding

If

N−d |E ||S | < 1

2
,

we can take the modulus of I (x) and round it up to 1 if it is ≥ 1
2 , and

round it down to 0 otherwise.

This gives us exact recovery using a simple and direct algorithm (to
be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

|E | · |S | < Nd

2
.

But what happens if we consider general signals?
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Matolcsi-Szucks/ Donoho-Stark point of view

Suppose that f : Zd
N → C is supported in E ⊂ Zd

N , with the
frequencies in S ⊂ Zd

N unobserved.

If f cannot be recovered uniquely, then there exists a signal
g : Zd

N → C such that g also has |E | non-zero entries,

f̂ (m) = ĝ(m) for m /∈ S ,

and f is not identically equal to g .
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f̂ (m) = ĝ(m) for m /∈ S ,

and f is not identically equal to g .

Alex Iosevich (University of Rochester ) Fourier uncertainty and exact signal recovery
January 2025: Colloquium talk at Northwestern
13 / 41



Mysterious Property → Unique Recovery

Let h = f − g . It is clear that ĥ has at most |S | non-zero entries, and
h has at most 2|E | non-zero entries.

Suppose that we knew somehow that

|{x : h(x) ̸= 0}| · |{m : ĥ(m) ̸= 0}| ≥ Nd .

It would then follow that if we assume

|E | · |S | < Nd

2
,

we must have h = 0, and hence the recovery is unique.
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A bit more notation

Given f : Zd
N → C, define

||f ||L1(Zd
N)

=
∑
x∈Zd

N

|f (x)|.

Similarly, if A ⊂ Zd
N , define

||f ||L1(A) =
∑
x∈A

|f (x)|.

We also define

||f ||L2(Zd
N)

=

∑
x∈Zd

N

|f (x)|2
 1

2

.
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Mysterious Property is the Fourier Uncertainty Principle

Let’s prove that if h : Zd
N → C such that T = {x : h(x) ̸= 0} and

S = {m : ĥ(m) ̸= 0}, then

|T | · |S | ≥ Nd .

We have

|h(x)| =

∣∣∣∣∣N− d
2

∑
m∈S

χ(x ·m)ĥ(m)

∣∣∣∣∣ ≤ N− d
2 · |S | ·max

m
|ĥ(m)|

≤ N−d · |S | · ||h||L1(Zd
N)
.

Summing both sides over x ∈ T and cancelling the L1 norms, we
obtain

|T | · |S | ≥ Nd .
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The method of least squares

The uniqueness proof above also suggests an algorithm for recovering
the missing information, albeit not a very efficient one. Let
f : Zd

N → C with {f̂ (m)}m∈S unobserved, and let

spt(f ) = {x : f (x) ̸= 0}.

Let

arg minu||û − f̂ ||L2(Sc ) subject to the constraint |spt(f )| = |spt(u)|.

This is a terrible algorithm as one has to consider signals supported
on all possible sets of size |spt(f )|. If we run it on a large data sets,
we will have to wait until the dinosaurs repopulate the planet...
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A much better algorithm

We have seen that when the signal is binary, recovery can be achieved
very efficiently using the Direct Recovery Algorithm. But what do we
do in general?

Donoho and Stark showed, using a beautiful idea due to Benjamin
Logan, that if f : Zd

N → C is supported in E , and the frequencies

{f̂ (m)}m∈S are unobserved, then if

|E | · |S | < Nd

2
,

then f can be recovered as

arg minu ||u||L1(Zd
N)

subject to f̂ (m) = û(m) for m /∈ S .
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Benjamin Franklin Logan

Logan was an accomplished bluegrass musician in addition to his
groundbreaking work in signal processing.
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David Donoho

David Donoho (1991 MacArthur Fellow) is one of the leading experts
in the development of effective methods for the construction of
low-dimensional representations for high-dimensional data problems,
development of wavelets for denoising and compressed sensing.
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Proof of the L1 recovery method

Let f = g + h, where g is the solution to the L1 minimization
problem above, and note that ĥ is supported in S . We have

||g ||L1(Zd
N)

= ||f − h||L1(Zd
N)

= ||f − h||L1(E) + ||h||L1(E c ) ≥ ||f ||L1(Zd
N)

+
[
||h||L1(E c ) − ||h||L1(E)

]
.

If we can show that ||h||L1(E c ) > ||h||L1(E), then

||f ||L1(Zd
N)

< ||g ||L1(Zd
N)
,

which is impossible since g is the L1 minimizer.

The resulting contradiction will prove that h ≡ 0.
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The uncertainty principle strikes again

We have

|h(x)| = N− d
2 ·

∣∣∣∣∣∑
m∈S

χ(x ·m)ĥ(m)

∣∣∣∣∣ ≤ N−d · |S | · ||h||L1(Zd
N)
.

It follows that

||h||L1(E) ≤ N−d · |E | · |S | · ||h||L1(Zd
N)

<
1

2
· ||h||L1(Zd

N)
.

We conclude that
||h||L1(E) < ||h||L1(E c ),

as desired.
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Can we loosen the |E | · |S | < Nd

2 assumption?

In general, the answer is no. Suppose that d = 1, N is not prime,
and E is a subgroup of ZN .

Then if f is supported on E , f̂ is supported on the annihilator
subgroup

S = {m ∈ ZN : xm = 0 ∀ x ∈ E}.

Since |E | · |S | = N, we see that the Donoho-Stark recovery condition
cannot be improved, up to a constant, since S can be a set of missing
frequencies.

However, we shall that for a generic set S of missing frequencies, the
situation is much better.
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The prime case d ≥ 2

If N is prime and d ≥ 2, it is not difficult to check that if f is
supported on a k-dimension plane H, f̂ is supported on the
orthogonal subspace H⊥.

It follows that the classical uncertainty principle is sharp in this case,
and the Donoho-Stark recovery condition cannot be improved, up to
a constant.
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The prime case d = 1

If N is prime and d = 1, a beautiful result due to Terry Tao says that
if f is supported on E and f̂ is supported on S , then

|E |+ |S | ≥ N + 1,

with the corresponding improvement for the exact signal recovery
condition.

This result is a consequence of a beautiful 1924 result due to
Chebotaryov, which says that every k by k minor of the Fourier matrix{

e−
2πixm

N

}
x∈ZN ,m∈ZN

is non-singular if N is an odd prime.
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Nikolai Chebotaryov

Nikolai Chebotaryov was an algebraist/number theorist working in
Galois theory and related fields.
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Terry Tao

Terry Tao (Fields Medal 2006) obtained ground-breaking results in
harmonic analysis, partial differential equations, analytic number
theory, combinatorics, theoretical computer science, and many other
areas.
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Bourgain’s Λq theorem - general formulation

Jean Bourgain proved that if G is a locally compact abelian group,
ϕ1, . . . , ϕn are orthogonal functions with ||ϕj ||∞ ≤ 1, the for a generic

set S ⊂ {1, 2, . . . , n} of size ≈ n
2
q , q > 2,∣∣∣∣∣

∣∣∣∣∣∑
i∈S

aiϕi

∣∣∣∣∣
∣∣∣∣∣
Lq(G)

≤ C (q) ·

(∑
i∈S

|ai |2
) 1

2

,

where C (q) depends only on q.

As we shall see, this result has a simple and effective built-in
uncertainty principle.
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Jean Bourgain

Jean Bourgain (Fields Medal 1994) was one of the greatest
mathematicians who ever lived. Reading his papers is an incredibly
rewarding, if somewhat painful, process.
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The meaning of generic

The notion of generic above means the following. Let 0 < δ < 1 and
let {ξj}1≤j≤n denote independent 0, 1 random variables of mean∫
ξj(ω)dω = δ, 1 ≤ j ≤ n.

Choosing δ = n
2
q
−1 generates a random subset

Sω = {1 ≤ j ≤ n : ξj(ω) = 1} of {1, 2, . . . n}

of expected size ⌈n
2
q ⌉. Bourgain’s theorem holding for a generic set S

means that the result holds for the set Sω with probability 1− oN(1).

In a simpler language, if we randomly choose a subset of {1, 2, . . . , n}
by choosing each element with probability p = n

2
q
−1, then Bourgain’s

theorem holds for such a set with probability close to 1.
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Bourgain’s Λq theorem

It is a consequence of Bourgain’s celebrated Λp theorem in locally

compact abelian groups that if f : Zd
N → C and f̂ is supported in S ,

then for a ”generic” set of size ⌈N
2d
q ⌉, 2 < q < ∞, 1

Nd

∑
x∈Zd

N

|f (x)|q
 1

q

≤ C (q)

 1

Nd

∑
x∈Zd

N

|f (x)|2
 1

2

,

with C (q) independent of N.

It is not difficult to see that this inequality implies that the support of
f must be a positive proportion of Zd

N .
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Signal recovery in the presence of the Λq inequality

Theorem

(A. Iosevich and A. Mayeli (2024)) Let f : Zd
N → C be a signal supported

in E ⊂ Zd
N . Suppose that the frequencies {f̂ (m)}m∈S are unobserved,

where S satisfies the Λq inequality with constant C (q), i.e whenever ĝ is

supported in S , |S | = ⌈N
2d
q ⌉, 1

Nd

∑
x∈Zd

N

|g(x)|q
 1

q

≤ C (q)

 1

Nd

∑
x∈Zd

N

|g(x)|2
 1

2

,

with C (q) independent of N. Then f can be recovered exactly provided
that

|E | < Nd

2(C (q))
1

1
2−

1
q

,
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A direct consequence of Bourgain’s Λq theorem

Suppose that S is generic, as in Bourgain’s theorem.

Suppose that f is supported in E ⊂ Zd
N and f̂ is supported in S .

Bourgain’s theorem implies that

N− d
q · |E |

1
q

(
1

|E |
∑
x∈E

|f (x)|q
) 1

q

≤ C (q)N− d
2 · |E |

1
2

(
1

|E |
∑
x∈E

|f (x)|2
) 1

2

.
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A direct consequence of Bourgain’s Λq theorem

It follows that

|E | ≥ Nd

(C (q))
1

1
2−

1
q

.

We conclude that if we send the Fourier transform of a signal f
supported on a set of size

<
Nd

2(C (q))
1

1
2−

1
q

,

and the frequencies in S ⊂ Zd
N , |S | = ⌈N

2d
q ⌉, satisfying the Λq, q > 2,

inequality with constant C (q) are missing, we can recover f exactly
with very high probability using the rather inefficient L2 method
described above.
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Talagrand’s theorem (general)

The general form of Talagrand’s theorem (the first result of this type
following Bourgain’s 1989 result) is the following.

Theorem

Let {ϕj}nj=1 be an orthonormal system in L2 with |ϕj(x)| ≤ 1, 1 ≤ j ≤ n.
There exists a constant γ0 ∈ (0, 1) and a generic subset I ⊂ {1, . . . , n}
with |I | ≥ γ0n such that for every a = (ai ) ∈ Cn,(∑

i∈I
|ai |2

) 1
2

≤ CT

√
log(n) log log(n) ·

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

aiϕi

∣∣∣∣∣
∣∣∣∣∣
L1

.

where CT > 0 is a universal constant.
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Talagrand’s theorem in our context

In the context of functions mapping Zd
N → C, Talagrand’s theorem

takes on the following form.

Theorem

There exists γ0 ∈ (0, 1) such that if h : Zd
N → C with ĥ supported in a

generic set S of size |S | ≥ γ0N
d , then with probability 1− oN(1), 1

Nd

∑
x∈Zd

N

|h(x)|2
 1

2

≤ CT

√
log(Nd) log log(Nd) · 1

Nd

∑
x∈Zd

N

|h(x)|.
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Michel Talagrand

Michel Talagrand (Abel Prize 2024) is one the greatest experts on
probability and functional analysis.
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A slight variant of a result due to Iosevich, Kashin,
Limonova, and Mayeli (2024)

Theorem

There exists γ0 ∈ (0, 1) such that if f : Zd
N → C with {f̂ (m)}m∈S

unobserved, where S is a generic set of size ≈ γ0N
d , then if

|{x ∈ Zd
N : f (x) ̸= 0}| ≤ 1

4CT

Nd

log(Nd) log log(Nd)
,

then f can be recovered uniquely using the algorithm

g = argminu||u||1 with the constraint û(m) = f̂ (m) for m /∈ S .
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Back to the time series imputation

Recall that the original values are in red, the trig imputation is in
black and the method arising from the world of exact signal
recovery is in blue.
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The key theorem behind the blue imputation engine

Theorem

(Burstein, Iosevich, Mayeli and Nathan) Let f : ZN → C, and suppose
that the values {f (x)}x∈M are unobserved, where M is a generic subset of
ZN . Let

g = argminu||û||1 with the constraint u(x) = f (x) for x /∈ M.

Suppose that f̂ is ϵ-concentrated on S ⊂ ZN in the sense that
||f̂ ||L2(Sc ) ≤

ϵ
N · ||f̂ ||L2(ZN)

, such that |S | < 1
16C2

T

N
log(N) log log(N) . Let

h = f − g . Then if h ̸= 0, then with probability 1− oN(1),

1
|M|
∑

x∈M |h(x)|
1
N

∑
x∈ZN

|f (x)|
≤ 4ϵ.
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