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Distinct patterns

I How many distinct distances are there?
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Least upper bounds

I N points in the plane.

I Upper bound
(N

2

)
= N(N−1)

2 ∼ N2.

I If randomly selected obtain
(N

2

)
∼ N2.
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Greatest lower bounds on a
√
N ×
√
N lattice?

I Distinct distances squared start out with 12 = 1, (
√

2)2 = 2
and go up to (

√
N)2 + (

√
N)2 = 2N.

I Asymptotically, up to constants, N√
log(N)

distinct distances.
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Erdős distinct distance problem (1946)

I What is the least number of distinct distances determined by
N points in the plane?

I Conjecture N√
log(N)

as N →∞.
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First result by Erdős

Theorem (Erdős)

Given N points in the plane there exists a point that determines at
least

√
N distinct distances.

Proof.

I Consider points p, q

The Erdős distinct distance problem First result by Erdős
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First result by Erdős

Theorem (Erdős)

Given N points in the plane there exists a point that determines at
least

√
N distinct distances.

Proof.

I s number of circles around p, t number of circles around q.
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First result by Erdős

Proof.

I All points except p and q on intersection of circles.

I Circles intersect in at most 2 points so at most 2st
intersections.

I Thus 2st ≥ N − 2 so the bigger of s and t is at least
√

N−2
2 .
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Progress on the conjecture in the plane

I Have N√
log(N)

for the lattice. Is it possible to have fewer

distinct distances?

I N
log(N) (Guth, Katz 2010)

I N0.864... (Katz, Tardos 2004)

I N0.8634... (Tardos 2003)

I N0.8571 (Solymosi, Toth 2001)

I N0.8 (Szekely 1993)

I N0.8

log(N) (Chung, Szemeredi, Trotter 1992)

I N0.7143... (Chung 1984)

I N0.66... (Moser 1952)

I N0.5 (Erdős 1946)

The Erdős distinct distance problem Progress on the conjecture in the plane



Conjecture and results in higher dimensions

I For dimensions d ≥ 3 the conjecture is N
2
d .

I Best result in R3 is N
3
5 by Solymosi and Vu from 2008.

I Best result in Rd , d ≥ 4, is

I N
2d+2

d2+2d−2 if d even.

I N
2d+2

d2+2d−5/3 if d odd.

by Solymosi and Vu from 2008.

The Erdős distinct distance problem Conjecture and results in higher dimensions



Quote by Erdős

“My most striking contribution to geometry is, no doubt, my
problem on the number of distinct distances. This can be found in
many of my papers on combinatorial and geometric problems.”
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Motivating example

I Distances: 1, 1,
√

2,
√

5,
√

5,
√

8

I Unit distances: 1, 1

I How many unit distances are there in general?
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Erdős unit distance problem (1946)

I At most how many times can the unit distance occur among
N points in the plane?

I Conjecture N1+ c
log log N for some constant c > 0 as N →∞.

The Erdős distinct distance problem Erdős unit distance problem (1946)



Progress on the conjecture in the plane

I N
3
2 (Erdős 1946)

I o(N
3
2 ) (Jozsa, Szemeredi 1975)

I N
13
9 (Beck, Spencer 1984)

I N
4
3 (Spencer, Szemeredi, Trotter 1984)
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Unit distance almost implies the distinct distance one

I For N points in the plane let

I u2(N) maximum number of unit distances.

I v2(N) minimum number of distinct distances.

I u2(N)v2(N) ≥
(N

2

)
∼ N2

I If u2(N) . N1+ε then get

v2(N) &
N2

N1+ε
= N1−ε

The Erdős distinct distance problem Unit distance almost implies the distinct distance one
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Conjecture and results in higher dimensions

I Conjecture N
4
3 log logN in R3 by Erdős in 1960.

I Best result N
295
197

+ε in R3 by Zahl in 2018.

I Trivial in Rd , d ≥ 4, due to the Lenz example.

I Place
⌊
N
2

⌋
points on the circle x2

1 + x2
2 = 1

2 , x3 = . . . = xd = 0.

I Place remaining points on the circle x2
3 + x2

4 = 1
2 ,

x1 = x2 = x5 = . . . = xd = 0.

I All points on first circle are unit distance from any point on
the second circle and vice versa.

I Get up to constants N2 unit distances.
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The Szemeredi-Trotter incidence theorem

I P set of points, L set of lines in R2.

I An incidence is a pair (p, `) ∈ P × L such that p is on `.

I Denote by I (P,L) the number of incidences in P × L

Theorem (Szemeredi, Trotter 1983)

Let P be a set of m points and let L be a set of n lines, both in
R2. Then

I (P,L) . m2/3n2/3 + m + n

The Erdős distinct distance problem The Szemeredi-Trotter incidence theorem



The Spencer-Szemeredi-Trotter result

Theorem (Spencer, Szemeredi, Trotter 1984)

Let P be a set of m points and let Γ be a set of n circles, both in
R2. Then

I (P, Γ) . m2/3n2/3 + m + n

I Consider N points in the plane and draw a unit circle around
each for a total of N circles.

I Total of I (P, C) . N
4
3 unit distances.

The Erdős distinct distance problem The Spencer-Szemeredi-Trotter result



Optimal point sets determining few distinct distances

gd(N) = min number of distinct distances among N points in Rd

N 1 2 3 4 5 6 7 8 9 10 11 12 13

g2(N) 0 1 1 2 2 3 3 4 4 5 5 5 6

Research Problems In Discrete Geometry
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Structure of optimal sets

Conjecture (Erdős 1988)

Optimal sets exist in a triangular lattice for N big enough.

The Erdős distinct distance problem Structure of optimal sets



Distances with specified multiplicities

I Does there exist a set with 3 points and distances d1, d2, d2?
Note that 3 points form

(3
2

)
= 3 distances.

I Does there exist a set with 4 points and distances
d1, d2, d2, d3, d3, d3? Note that 4 points form

(4
2

)
= 6

distances.

The Erdős distinct distance problem Distances with specified multiplicities
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I What if no three points are allowed to be on a single line and
no four points allowed to be on a circle?

The Erdős distinct distance problem Distances with specified multiplicities



I What if no three points are allowed to be on a single line and
no four points allowed to be on a circle?
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Crescent configurations

Definition (Crescent Configuration)

We say N points are in crescent configuration in the plane if they
lie in general position and determine N − 1 distinct distances, such
that for every 1 ≤ i ≤ N − 1 there is a distance that occurs exactly
i times.

I Note 1 + 2 + . . . + (N − 1) = N(N−1)
2 =

(N
2

)
so all possible

distances are specified.

Definition (General Position)

We say that N points are in general position in the plane if no
three points lie on the same line and no four points lie on the same
circle.

The Erdős distinct distance problem Crescent configurations
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Crescent configuration for 8 points in the plane

I The construction above is due to Palásti.

I No construction is known for 9 points in the plane.

I Erdős conjectured that for a sufficiently large N it was
impossible to find crescent configurations.

The Erdős distinct distance problem Crescent configuration for 8 points in the plane
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Crescent configurations exist in high enough dimensions

Theorem (Burt, Goldstein, Manski, Miller, Palsson, Suh)

For all N ≥ 3, there exists a set of N points in a crescent
configuration in RN−2.

I In R3 we take general position to mean that no 4 points lie on
the same plane and no 5 points lie on the same sphere.

I Theorem shows that a 5 point crescent configuration exists in
R3.

I Can you find bigger crescent configurations in R3?

The Erdős distinct distance problem Crescent configurations exist in high enough dimensions
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The Erdős distinct distance problem Crescent configurations exist in high enough dimensions



SMALL group 2015
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Only 4 crescent configurations on 4 points

Theorem (Durst, Hlavacek, Huynh, Miller, Palsson)

There are precisely 4 crescent configurations on 4 points up to
graph isomorphism.

The Erdős distinct distance problem Only 4 crescent configurations on 4 points



Many crescent configurations on 5 points

The Erdős distinct distance problem Many crescent configurations on 5 points



SMALL group 2016
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SMALL group 2019

I Considered the question for general norms ‖ · ‖ in R2.

I Many constructions and/or results for particular norms.

I ‖x‖2 = (x2
1 + x2

2 )
1
2

I ‖x‖1 = |x1|+ |x2|

I ‖x‖∞ = max (|x1|, |x2|)

I ‖x‖p = (xp1 + xp2 )
1
p

I The students: Sara Fish, Dylan King, Catherine Wahlenmayer

The Erdős distinct distance problem SMALL group 2019



Higher order patterns: Triangles

The Erdős distinct distance problem SMALL group 2019



Triangles in the plane

I Consider triangles obtained from N points in the plane.

I Least upper bounds
(N

3

)
∼ N3

I Greatest lower bounds

I N2 (Rudnev)

I N2

log(N) (Brass, Moser, Pach and Guth, Katz)

I N
12
7 under additional constraints (Greenleaf, Iosevich)

I N
5
3 (Brass, Moser, Pach and Szemerédi, Trotter)

I What is the structure of the optimal sets for triangles?
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Optimal point sets determining few distinct triangles

td(N) = min number of distinct triangles among N points in Rd

N 2 3 4 5 6 7 8 . . . d d+1 d+2 . . . 2d

t2(N) 0 1 1 2 3 ? ? . . . ? ? ? . . . ?

t3(N) 0 1 1 2 2 ? ? . . . ? ? ? . . . ?

t4(N) 0 1 1 1 2 2 2 . . . ? ? ? . . . ?
...

...
...

...
...

...
...

...
...

...
...

...
...

...

td(N) 0 1 1 1 1 1 1 . . . 1 1 2 . . . 2

Joint with Hazel Brenner, James Depret-Guillaume, Alyssa Epstein,
Adam Lott, Steven J. Miller, Steven Senger and Robert Stuckey.
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Key objects in R3

Wikipedia

I Will the other Platonic solids, the cube, the dodecahedron
and the icosahedron, also play a role?

The Erdős distinct distance problem Key objects in R3



Questions?

Thank you!

For more info see my website
https://intranet.math.vt.edu/people/palsson/

The Erdős distinct distance problem Questions?
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